cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171207 G.f. satisfies: A(x) = (1 + x*A(2x))^6.

This page as a plain text file.
%I A171207 #9 Apr 02 2025 16:09:50
%S A171207 1,6,87,2468,131799,13400550,2646848041,1030386755856,796631252763576,
%T A171207 1227659952939056640,3777547269650299331856,
%U A171207 23228194648169000672639616,285544368619000766118426358016,7018967175754802830514246125923840,345031382341287335424234252089128848384
%N A171207 G.f. satisfies: A(x) = (1 + x*A(2x))^6.
%F A171207 Self-convolution 6th power of A171206 where a(n) = A171206(n+1)/2^n for n>=0.
%t A171207 terms = 15; A[_] = 0; Do[A[x_] = (1+x*A[2x])^6 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* _Stefano Spezia_, Apr 02 2025 *)
%o A171207 (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=(1+x*subst(A, x, 2*x))^6); polcoeff(A, n)}
%Y A171207 Cf. A135868, A171200-A171205, A171206, A171208-A171211.
%K A171207 nonn
%O A171207 0,2
%A A171207 _Paul D. Hanna_, Dec 05 2009
%E A171207 a(14) from _Stefano Spezia_, Apr 02 2025