This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171212 #6 Feb 07 2025 00:51:58 %S A171212 0,1,2,16,320,12928,985088,140861440,38451150848,20403322617856, %T A171212 21307854867660800,44110759073910095872,181739941085108158595072, %U A171212 1493546441998961207249207296,24512116566896662943648857456640 %N A171212 G.f.: A(x) satisfies A(x) = x + x*A(A(2*x)). %C A171212 More generally, if F(x) = x + x*F(F(qx)), then %C A171212 F(x) = x + x*F(qx) + x*F(qx)*F(qF(qx)) + x*F(qx)*F(qF(qx))*F(qF(qF(qx))) +... %C A171212 with a simple solution at q=1/2: %C A171212 F(x) = x/(1-x/2) satisfies: F(x) = x + x*F(F(x/2)). %e A171212 G.f.: A(x) = x + 2*x^2 + 16*x^3 + 320*x^4 + 12928*x^5 +... %e A171212 A(A(x)) = x + 4*x^2 + 40*x^3 + 808*x^4 + 30784*x^5 + 2200960*x^6 +...+ a(n)*x^n/2^(n-1) +... %e A171212 As a formal series involving products of iterations of the g.f., %e A171212 A(x) = x + x*A(2x) + x*A(2x)*A(2A(2x)) + x*A(2x)*A(2A(2x))*A(2A(2A(2x))) +... %e A171212 which, upon replacing x with A(2x), yields: %e A171212 A(A(2x)) = A(2x) + A(2x)*A(2A(2x)) + A(2x)*A(2A(2x))*A(2A(2A(2x))) +... %e A171212 thus A(x) = x + x*A(A(2x)). %o A171212 (PARI) {a(n,q=2)=local(A=x+x^2);for(i=1,n,A=x+x*subst(A,x,subst(A,x,q*x+O(x^n))));polcoeff(A,n)} %Y A171212 Cf. A171213 (q=3), A171214 (q=1/3). %K A171212 nonn %O A171212 0,3 %A A171212 _Paul D. Hanna_, Dec 08 2009 %E A171212 a(0) = 0 added by _Jason Yuen_, Feb 07 2025