This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171232 #9 Jun 29 2020 05:09:15 %S A171232 1,3,1,5,1,1,7,1,1,1,9,3,1,1,1,11,1,1,1,1,1,13,5,1,1,1,1,1,15,1,3,1,1, %T A171232 1,1,1,17,7,1,1,1,1,1,1,1,19,1,1,1,1,1,1,1,1,1,21,9,5,3,1,1,1,1,1,1,1, %U A171232 23,1,1,1,1,1,1,1,1,1,1,1,25,11,1,1,1,1 %N A171232 Array read by antidiagonals, T(n,k) = 2*(n/k) - 1, if n mod k = 0; otherwise, T(n,k) = 1. %C A171232 T(n,1): continued fraction expansion of coth(1). %C A171232 T(n,2): continued fraction expansion of tan(1) = cot(pi/2 - 1). %F A171232 T(n,k) = A171233(n,k) - A077049(n,k). %e A171232 Array begins %e A171232 1 1 1 1 1 ... %e A171232 3 1 1 1 1 ... %e A171232 5 1 1 1 1 ... %e A171232 7 3 1 1 1 ... %e A171232 9 1 1 1 1 ... %e A171232 ............. %t A171232 T[n_,k_] := If[Divisible[n, k], 2*(n/k) - 1, 1]; Table[T[n-k+1, k], {n, 1, 10}, {k,1, n}] //Flatten (* _Amiram Eldar_, Jun 29 2020 *) %Y A171232 Cf. T(n, 1) = A005408(n-1), T(n, 2) = A093178(n-1), A171233, A077049. %K A171232 cofr,nonn,tabl %O A171232 1,2 %A A171232 _Ross La Haye_, Dec 05 2009 %E A171232 More terms from _Amiram Eldar_, Jun 29 2020