This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171242 #10 Nov 28 2023 19:16:37 %S A171242 242,42,43,83,44,41,157,24,39,50 %N A171242 a(n) = k is the smallest exponent k such that at least 3 equal decimal digits "n n n" appear in the decimal representation of 2^k (n=0,1,...,9). %D A171242 E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig-Jena-Berlin, 2. Auflage 1982 %D A171242 Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983 %e A171242 n=0: 2^242 = 7067388259113537318333190002971674063309935587502475832486424805170479104 %e A171242 n=1: 2^42 = 4398046511104 %e A171242 n=2: 2^43 = 8796093022208 %e A171242 n=3: 2^83 = 9671406556917033397649408 %e A171242 n=4: 2^44 = 17592186044416 %e A171242 n=5: 2^41 = 2199023255552 %e A171242 n=6: 2^157 = 182687704666362864775460604089535377456991567872 %e A171242 n=7: 2^24 = 16777216 %e A171242 n=8: 2^39 = 549755813888 %e A171242 n=9: 2^50 = 1125899906842624 %t A171242 Table[Module[{k=1},While[SequenceCount[IntegerDigits[2^k],{n,n,n}]<1,k++];k],{n,0,9}] (* _Harvey P. Dale_, Nov 28 2023 *) %Y A171242 Cf. A000079, A018802, A171132. %K A171242 nonn,base,fini,full,easy %O A171242 0,1 %A A171242 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 06 2009 %E A171242 Offset corrected by _Alois P. Heinz_, Nov 28 2023