This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171246 #21 Sep 08 2022 08:45:49 %S A171246 1,1,1,1,2,1,1,3,3,1,1,7,13,7,1,1,13,51,51,13,1,1,23,181,361,181,23,1, %T A171246 1,34,530,2120,2120,530,34,1,1,40,1261,10081,20161,10081,1261,40,1,1, %U A171246 38,2384,38144,152573,152573,38144,2384,38,1 %N A171246 Triangle read by rows: T(n,k) = 1 + floor(n!/2^((k - n/2)^2 + 1)). %H A171246 G. C. Greubel, <a href="/A171246/b171246.txt">Rows n = 0..100 of triangle, flattened</a> %H A171246 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 695. %F A171246 T(n,k) = 1 + floor(n!/2^((k - n/2)^2 +1)). %e A171246 Triangle begins as: %e A171246 1; %e A171246 1, 1; %e A171246 1, 2, 1; %e A171246 1, 3, 3, 1; %e A171246 1, 7, 13, 7, 1; %e A171246 1, 13, 51, 51, 13, 1; %e A171246 1, 23, 181, 361, 181, 23, 1; %e A171246 1, 34, 530, 2120, 2120, 530, 34, 1; %t A171246 T[n_, k_]:= 1 +Floor[n!*2^(-(k-n/2)^2 -1)]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten %o A171246 (PARI) {T(n,k) = 1 + floor(n!/2^((k - n/2)^2 +1))}; \\ _G. C. Greubel_, Apr 11 2019 %o A171246 (Magma) [[1 +Floor(Factorial(n)/2^((k - n/2)^2 +1)): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Apr 11 2019 %o A171246 (Sage) [[1 + floor(factorial(n)/2^((k-n/2)^2 +1)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Apr 11 2019 %Y A171246 Cf. A171229. %K A171246 nonn,tabl %O A171246 0,5 %A A171246 _Roger L. Bagula_, Dec 06 2009 %E A171246 Edited by _G. C. Greubel_, Apr 11 2019