cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171367 Antidiagonal sums of triangle of Stirling numbers of 2nd kind A048993.

This page as a plain text file.
%I A171367 #40 Jan 24 2025 17:11:42
%S A171367 1,0,1,1,2,4,9,22,58,164,495,1587,5379,19195,71872,281571,1151338,
%T A171367 4902687,21696505,99598840,473466698,2327173489,11810472444,
%U A171367 61808852380,333170844940,1847741027555,10532499571707,61649191750137,370208647200165,2278936037262610,14369780182166215
%N A171367 Antidiagonal sums of triangle of Stirling numbers of 2nd kind A048993.
%H A171367 Seiichi Manyama, <a href="/A171367/b171367.txt">Table of n, a(n) for n = 0..665</a>
%H A171367 P. Flajolet, <a href="http://algo.inria.fr/flajolet/Publications/Flajolet80b.pdf">Combinatorial aspects of continued fractions</a>, Discrete Mathematics, Volume 32, Issue 2, 1980, pp. 125-161.
%F A171367 G.f.: 1/(1-x^2/(1-x/(1-x^2/(1-2x/(1-x^2/1-3x/(1-x^2/(1-4x/(1-x^2/(1-5x/(1-... (continued fraction).
%F A171367 G.f.: (G(0) - 1)/(x-1)/x where G(k) =  1 - x/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 16 2013
%F A171367 G.f.: T(0)/(1-x^2), where T(k) = 1-x^3*(k+1)/(x^3*(k+1)-(1-x*(x+k))*(1-x*(x+1+k))/T(k+1) ); (continued fraction, after P. Flajolet, p. 140). - _Sergei N. Gladkovskii_, Oct 30 2013
%F A171367 G.f. (alternating signs): Sum_{k>=0} S(x,k)*x^k, where S(x,k)*exp(-x) is the inverse Mellin transform of Gamma(s)*s^k. - _Benedict W. J. Irwin_, Oct 14 2016
%p A171367 b:= proc(n, m) option remember; `if`(n<=m,
%p A171367      `if`(n=m, 1, 0), m*b(n-1, m)+b(n-1, m+1))
%p A171367     end:
%p A171367 a:= n-> b(n, 0):
%p A171367 seq(a(n), n=0..30);  # _Alois P. Heinz_, May 16 2023
%t A171367 Table[Sum[StirlingS2[n-k, k], {k, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Oct 18 2016 *)
%o A171367 (Maxima) makelist(sum(stirling2(n-k,k),k,0,n),n,0,60); /* _Emanuele Munarini_, Jun 01 2012 */
%o A171367 (PARI) a(n) = sum(k=0, n, stirling(n-k, k,2)); /* _Joerg Arndt_, Jan 16 2013 */
%Y A171367 Cf. A024427, A097341, A097342.
%K A171367 easy,nonn
%O A171367 0,5
%A A171367 _Paul Barry_, Dec 06 2009