cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171839 Equal to A171368*A007318.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 3, 2, 1, 0, 0, 6, 8, 3, 1, 0, 0, 15, 22, 15, 4, 1, 0, 0, 36, 68, 52, 24, 5, 1, 0, 0, 91, 198, 191, 100, 35, 6, 1, 0, 0, 232, 586, 651, 425, 170, 48, 7, 1, 0, 0, 603, 1718, 2203, 1656, 820, 266, 63, 8, 1, 0, 0, 1585, 5047, 7285, 6299, 3591, 1435, 392, 80
Offset: 0

Views

Author

Philippe Deléham, Dec 19 2009

Keywords

Comments

Another version of A114586.

Examples

			Triangle begins : 1 ; 0,0 ; 1,0,0 ; 1,1,0,0 ; 3,2,1,0,0 ; 6,8,3,1,0,0 ; ...
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A099323(n+1), A126120(n), A005043(n), A000957(n+1), A117641(n) for x = -2, -1, 0, 1, 2 respectively.

A171388 Expansion of the first column of triangle T_(2,x), T_(x,y) defined in A039599; T_(2,0)= A126075, T_(2,1)= A038622, T_(2,2)= A039598, T_(2,3)= A124733, T_(2,4)= A124575.

Original entry on oeis.org

1, 2, 0, 5, 0, 0, 12, 1, 0, 0, 30, 4, 1, 0, 0, 74, 17, 4, 1, 0, 0, 185, 56, 21, 4, 1, 0, 0, 460, 185, 74, 26, 4, 1, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 07 2009

Keywords

Examples

			Triangle begins:
   1;
   2,  0;
   5,  0, 0;
  12,  1, 0, 0;
  30,  4, 1, 0, 0;
  74, 17, 4, 1, 0, 0;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A054341(n), A005773(n+1), A000108(n+1), A007317(n), A033543(n) for x = 0, 1, 2, 3, 4 respectively.
Showing 1-2 of 2 results.