This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171372 #22 Dec 12 2023 07:39:09 %S A171372 1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5, %T A171372 5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5, %U A171372 5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5 %N A171372 a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1. %C A171372 The diagonal of a table of numerators of the Rydberg-Ritz spectrum of hydrogen: %C A171372 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 %C A171372 0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, ... A061037 %C A171372 0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, ... A061041 %C A171372 0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, ... A061045 %C A171372 0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, ... A061049 %C A171372 0, 21, 11, 69, 6, 1, 39, 189, 14, 261, 3, ... %C A171372 0, 25, 13, 1, 7, 145, 5, 217, 1, 11, 85, ... %C A171372 0, 29, 15, 93, 8, 165, 51, 5, 18, 333, 95, ... %C A171372 0, 33, 17, 105, 9, 185, 57, 273, 5, 369, 105, ... %C A171372 0, 37, 19, 13, 10, 205, 7, 301, 22, 5, 115, ... %C A171372 0, 41, 21, 129, 11, 9, 69, 329, 3, 441, 1, ... %C A171372 In that respect, constructed similar to A144437. %H A171372 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1). %F A171372 a(n) = numerator of 5/(6*n)^2 . %F A171372 Period 5: repeat [1,5,5,5,5]. %F A171372 G.f.: (1 + 5*x + 5*x^2 + 5*x^3 + 5*x^4)/((1-x)*(1 + x + x^2 + x^3 + x^4)). %F A171372 a(n) = 1 + 4*sign(n mod 5). - _Wesley Ivan Hurt_, Sep 26 2018 %F A171372 a(n) = (21-8*cos(2*n*Pi/5)-8*cos(4*n*Pi/5))/5. - _Wesley Ivan Hurt_, Sep 27 2018 %t A171372 Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* _G. C. Greubel_, Sep 20 2018 *) %o A171372 (PARI) concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ _G. C. Greubel_, Sep 20 2018 %o A171372 (Magma) [1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // _G. C. Greubel_, Sep 20 2018 %Y A171372 Cf. A171373 (binomial transform), A171408, A105371. %K A171372 nonn,easy,frac %O A171372 0,2 %A A171372 _Paul Curtz_, Dec 07 2009 %E A171372 Edited by _R. J. Mathar_, Dec 15 2009