cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171377 Zeros in a A171246 modulo two matrix:a(n)=(n+1)^2-Sum[Sum[Mod[A171246(m,k),2],{k,0,n}],{m,0,n}].

This page as a plain text file.
%I A171377 #6 Jul 22 2025 07:31:27
%S A171377 0,1,4,7,11,16,22,35,45,60,74,91,107,124,142,161,179,204,228,255,277,
%T A171377 306,332,363,389,418,450,493,529,562,600,635,671,712,754,799,839,890,
%U A171377 940
%N A171377 Zeros in a A171246 modulo two matrix:a(n)=(n+1)^2-Sum[Sum[Mod[A171246(m,k),2],{k,0,n}],{m,0,n}].
%C A171377 The sequence is the relationship of holes to fractal by area of Gaussian scale 2 modulo two matrices.
%C A171377 The area ratio: a(n)/(n+1)^2 varies fractally while approaching a maximum near 0.6375 and then, declining.
%t A171377 Clear[t, n, k, a]
%t A171377 t[n_, k_] = If[k <= n, 1 + Floor[n!*2^(-(k - n/2)^2)/2], 0]
%t A171377 TableForm[Table[Table[Table[Mod[t[m, k], 2], {k, 0, n}], {m, 0, n}], { n, 0, 10}]]
%t A171377 (*A006046 like*)
%t A171377 Table[Sum[Sum[Mod[t[m, k], 2], {k, 0, m}], {m, 0, n}], {n, 0, 30}]
%t A171377 a = Table[(n + 1)^2 - Sum[Sum[Mod[t[m, k], 2], { k, 0, m}], {m, 0, n}], {n, 0, 40}]
%Y A171377 A006046, A001316, A006046
%K A171377 nonn,uned
%O A171377 0,3
%A A171377 _Roger L. Bagula_, Dec 07 2009