cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171400 Minimal number of editing steps (delete, insert or substitute) to transform the binary representation of n into that of A007918(n), the least prime not less than n.

This page as a plain text file.
%I A171400 #3 Mar 30 2012 18:51:05
%S A171400 1,1,0,0,1,0,1,0,2,1,1,0,1,0,3,3,1,0,1,0,2,1,1,0,2,1,2,2,1,0,1,0,2,1,
%T A171400 2,2,1,0,3,3,1,0,1,0,2,1,1,0,2,1,2,2,1,0,2,2,2,1,1,0,1,0,5,4,2,1,1,0,
%U A171400 2,1,1,0,1,0,2,1,2,1,1,0,2,1,1,0,2,2,3,3,1,0,4,4,4,4,5,5,1,0,2,2,1,0,1,0,2
%N A171400 Minimal number of editing steps (delete, insert or substitute) to transform the binary representation of n into that of A007918(n), the least prime not less than n.
%C A171400 Delete steps are not necessary;
%C A171400 a(n) = 0 iff n is prime: a(A000040(n))=0;
%C A171400 a(A171401(n)) = 1;
%C A171400 A171402 gives smallest numbers m such that a(m)=n: a(A171402(n))=n.
%H A171400 R. Zumkeller, <a href="/A171400/b171400.txt">Table of n, a(n) for n = 0..2500</a>
%H A171400 Michael Gilleland, <a href="http://www.merriampark.com/ld.htm">Levenshtein Distance</a>
%H A171400 Wikipedia, <a href="http://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein Distance</a>
%F A171400 a(n) = BinaryLevenshteinDistance(n, A007918(n)).
%e A171400 n=14, A007918(14)=17: 14==1110->1100->1100->10001==17, 2 subst and 1 ins: a(14)=3;
%e A171400 n=15, A007918(15)=17: 15==1111->1011->1001->10001==17, 2 subst and 1 ins: a(15)=3;
%e A171400 n=16, A007918(16)=17: 16==10000->10001==17, 1 subst: a(16)=1, A171401(8)=16;
%e A171400 n=17, A007918(17)=17: no editing step: a(17)=0;
%e A171400 n=18, A007918(18)=19: 18==10010->10011==19, 1 subst: a(18)=1, A171401(9)=18.
%Y A171400 Cf. A007088, A007920.
%K A171400 base,nonn
%O A171400 0,9
%A A171400 _Reinhard Zumkeller_, Dec 08 2009