This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171402 #36 May 01 2025 08:13:42 %S A171402 2,0,8,14,63,62,252,254,766,2040,4095,4094,12286,32750,32764,65534, %T A171402 262141,262140,1048574,2097150,7340030,8388602,25165820,33554428, %U A171402 67108860,134217696,268435420,268435452,1073741790,1073741820,3221225470,8589934590,25769803760 %N A171402 Smallest number m such that exactly n editing steps (insert or substitute) are necessary to transform the binary representation of m into the least prime not less than m. %H A171402 Michael Gilleland, <a href="https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein%20Distance.htm">Levenshtein Distance</a> %H A171402 Wikipedia, <a href="http://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein Distance</a> %F A171402 A171400(a(n)) = n. %F A171402 BinaryLevenshteinDistance(a(n), A007918(a(n))) = n. %F A171402 For n > 1, A007918(a(n)) must have >= n+1 digits and empirically a(n) >= A151799(A007918(2^(n+1))) + 1 - _Michael S. Branicky_, Feb 05 2022 %o A171402 (Python) %o A171402 from Levenshtein import distance # after pip install python-Levenshtein %o A171402 from sympy import nextprime %o A171402 def a(n): %o A171402 m = 0 %o A171402 while True: %o A171402 b = bin(m)[2:] %o A171402 if distance(b, bin(nextprime(m-1))[2:]) == n: %o A171402 return m %o A171402 m += 1 %o A171402 print([a(n) for n in range(1, 16)]) # _Michael S. Branicky_, Feb 05 2022 %Y A171402 Cf. A007918, A151799, A152487, A171400. %K A171402 nonn,base %O A171402 0,1 %A A171402 _Reinhard Zumkeller_, Dec 08 2009 %E A171402 a(10)-a(26) from _Michael S. Branicky_, Feb 05 2022 %E A171402 a(27)-a(29) from _Michael S. Branicky_, Feb 06 2022 %E A171402 a(30)-a(31) from _Michael S. Branicky_, Feb 19 2022 %E A171402 a(32) from _Jinyuan Wang_, May 01 2025