cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171412 Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = (x^3 + x^2 + x + 1)^floor(n/2) if n is odd, and p(x,n) = (x + 1)*p(x,n-1) otherwise.

This page as a plain text file.
%I A171412 #10 Jan 13 2019 12:07:09
%S A171412 1,1,1,1,1,1,1,1,2,2,2,1,1,2,3,4,3,2,1,1,3,5,7,7,5,3,1,1,3,6,10,12,12,
%T A171412 10,6,3,1,1,4,9,16,22,24,22,16,9,4,1,1,4,10,20,31,40,44,40,31,20,10,4,
%U A171412 1,1,5,14,30,51,71,84,84,71,51,30,14,5,1,1,5,15,35,65,101,135,155,155,135,101,65,35,15,5,1
%N A171412 Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = (x^3 + x^2 + x + 1)^floor(n/2) if n is odd, and p(x,n) = (x + 1)*p(x,n-1) otherwise.
%e A171412 Triangle begins:
%e A171412   1;
%e A171412   1, 1;
%e A171412   1, 1,  1,  1;
%e A171412   1, 2,  2,  2,   1;
%e A171412   1, 2,  3,  4,   3,   2,   1;
%e A171412   1, 3,  5,  7,   7,   5,   3,   1;
%e A171412   1, 3,  6, 10,  12,  12,  10,   6,   3,   1;
%e A171412   1, 4,  9, 16,  22,  24,  22,  16,   9,   4,   1;
%e A171412   1, 4, 10, 20,  31,  40,  44,  40,  31,  20,  10,   4,   1;
%e A171412   1, 5, 14, 30,  51,  71,  84,  84,  71,  51,  30,  14,   5,  1;
%e A171412   1, 5, 15, 35,  65, 101, 135, 155, 155, 135, 101,  65,  35, 15,  5, 1;
%e A171412   1, 6, 20, 50, 100, 166, 236, 290, 310, 290, 236, 166, 100, 50, 20, 6, 1;
%e A171412   ...
%t A171412 p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^3 + x^2 + x + 1)^Floor[n/2]]
%t A171412 Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]
%o A171412 (Maxima)
%o A171412 p(x, n) := if mod(n, 2) = 0 then (x + 1)*p(x, n - 1) else (x^3 + x^2 + x + 1)^floor(n/2)$
%o A171412 T(n, k) := ratcoef(p(x, n), x, k)$
%o A171412 create_list(T(n, k), n, 1, 12, k, 0, hipow(fullratsimp(p(x, n)), x));
%o A171412 /* _Franck Maminirina Ramaharo_, Jan 13 2019 */
%Y A171412 Row sums: A000079.
%Y A171412 Cf. A008406, A171414.
%K A171412 nonn,easy,tabf
%O A171412 1,9
%A A171412 _Roger L. Bagula_, Dec 08 2009
%E A171412 Edited by _Franck Maminirina Ramaharo_, Jan 13 2019