cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171437 Square array read by antidiagonals: T(m,n) is the Wiener index of the prism graph C(m) x P(n) (m>=3, n>=1). The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.

Original entry on oeis.org

3, 8, 21, 15, 48, 63, 27, 85, 136, 138, 42, 144, 235, 288, 255, 64, 217, 387, 490, 520, 423, 90, 320, 574, 792, 875, 848, 651, 125, 441, 832, 1162, 1395, 1415, 1288, 948, 165, 600, 1134, 1664, 2030, 2232, 2135, 1856, 1323, 216, 781, 1525, 2250, 2880, 3227
Offset: 3

Views

Author

Emeric Deutsch, Sep 29 2010

Keywords

Comments

T(m,2) = A138179(m).

Examples

			Square array starts:
   3,  21,  63, 138,  255,...
   8,  48, 136, 288,  520,...
  15,  85, 235, 490,  875,...
  27, 144, 387, 792, 1395,...
		

Crossrefs

Cf. A138179.

Programs

  • Maple
    T := proc (m, n) if `mod`(m, 2) = 1 then (1/24)*m*n*(4*m*(n^2-1)+3*n*(m^2-1)) else (1/24)*m^2*n*(4*n^2-4+3*m*n) end if end proc: for m from 3 to 12 do seq(T(m+1-j, j), j = 1 .. m-2) end do; # yields sequence in triangular form

Formula

T(m,n) = (1/24)*m*n*(4*m*(n^2-1)+3*n*(m^2-1)) if m is odd.
T(m,n) = (1/24)*m^2*n*(4*(n^2-1)+3*m*n) if m is even.
The Wiener polynomial p[n](t) for C(2m+1) x P(n) satisfies the recurrence relation p[n]=p[n-1]+p[1]+(2m+1)*a[n], where a[n]=[t+2*sum(t^j,j=2..m+1)*sum(t^j,j=0..n-2) and p[1]=(2m+1)*sum(t^j,j=1..m).
The Wiener polynomial q[n](t) for C(2m) x P(n) satisfies the recurrence relation q[n]=q[n-1]+q[1]+2m*b[n], where b[n]=[t+t^{m+1}+2*sum(t^j,j=2..m)*sum(t^j,j=0..n-2) and q[1]=2m*sum(t^j,j=1..m-1)+m*t^m.
The above recurrence relations yield simple expressions for the Wiener polynomials (however, they are too long for being reproduced here).