This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171441 #27 Mar 19 2023 09:44:49 %S A171441 1,7,22,42,57,63,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64, %T A171441 64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64, %U A171441 64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64 %N A171441 Expansion of g.f. (1+x)^6/(1-x). %C A171441 a(n)=2^6=64 for n>=6. We observe that this sequence is the transform of A171440 by T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...). %C A171441 Also continued fraction expansion of 1+(1233212607598+5*sqrt(41))/8688482797079. - _Bruno Berselli_, Sep 23 2011 %H A171441 Richard Choulet, <a href="https://mp.sbpm.be/MP157.PDF">Une nouvelle formule de combinatoire?</a>, Mathématique et Pédagogie, 157 (2006), p. 53-60. In French. %H A171441 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1). %F A171441 With m=7, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). %e A171441 a(4) = C(7,4-0) + C(7,4-2) + C(7,4-4) = 35+21+1 = 57. %p A171441 m:=7:for n from 0 to 40 do a(n):=sum('binomial(m,n-2*k)',k=0..floor(n/2)): od : seq(a(n),n=0..40); %Y A171441 Cf. A040000, A113311, A115291, A171418, A171440, A171442, A171443. %K A171441 nonn,easy %O A171441 0,2 %A A171441 _Richard Choulet_, Dec 09 2009 %E A171441 Definition rewritten by _Bruno Berselli_, Sep 23 2011