cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171473 a(n) = 6*a(n-1) - 8*a(n-2)-3 for n > 1; a(0) = 35, a(1) = 135.

This page as a plain text file.
%I A171473 #20 Sep 27 2023 16:43:03
%S A171473 35,135,527,2079,8255,32895,131327,524799,2098175,8390655,33558527,
%T A171473 134225919,536887295,2147516415,8590000127,34359869439,137439215615,
%U A171473 549756338175,2199024304127,8796095119359,35184376283135
%N A171473 a(n) = 6*a(n-1) - 8*a(n-2)-3 for n > 1; a(0) = 35, a(1) = 135.
%C A171473 Related to Reverse and Add trajectory of 22 in base 2: A061561(4*n+3) = 3*a(n).
%H A171473 Vincenzo Librandi, <a href="/A171473/b171473.txt">Table of n, a(n) for n = 0..500</a>
%H A171473 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).
%F A171473 a(n) = 32*4^n + 4*2^n - 1.
%F A171473 G.f.: (35-110*x+72*x^2)/((1-x)*(1-2*x)*(1-4*x)).
%F A171473 a(n) = A092431(n+3).
%F A171473 a(n+1) - a(n) = A049775(n+5).
%F A171473 E.g.f.: exp(x)*(32*exp(3*x) + 4*exp(x) - 1). - _Stefano Spezia_, Sep 27 2023
%o A171473 (PARI) {m=20; v=concat([35, 135], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]-3); v}
%o A171473 (Magma) [32*4^n+4*2^n-1: n in [0..30]]; // _Vincenzo Librandi_, Jul 18 2011
%Y A171473 Cf. A061561, A092431, A049775, A171470, A171471, A171472.
%K A171473 nonn,easy
%O A171473 0,1
%A A171473 _Klaus Brockhaus_, Dec 09 2009