This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171479 #18 Feb 23 2025 11:20:19 %S A171479 1,8,43,197,841,3473,14113,56897,228481,915713,3666433,14672897, %T A171479 58705921,234852353,939466753,3757981697,15032156161,60129083393, %U A171479 240517251073,962070839297,3848287027201,15393155448833,61572636475393 %N A171479 a(n) = 6*a(n-1)-8*a(n-2)+3 for n > 1; a(0) = 1, a(1) = 8. %H A171479 Vincenzo Librandi, <a href="/A171479/b171479.txt">Table of n, a(n) for n = 0..500</a> %H A171479 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8) %F A171479 a(n) = (2-7*2^n+7*4^n)/2. %F A171479 G.f.: (1+x+x^2)/((1-x)*(1-2*x)*(1-4*x)). %F A171479 E.g.f.: exp(x)*(2 - 7*exp(x) + 7*exp(3*x))/2. - _Stefano Spezia_, Feb 23 2025 %p A171479 A171479:=n->(2-7*2^n+7*4^n)/2: seq(A171479(n), n=0..30); # _Wesley Ivan Hurt_, Apr 28 2017 %t A171479 LinearRecurrence[{7,-14,8},{1,8,43},30] (* _Harvey P. Dale_, Sep 18 2022 *) %o A171479 (PARI) {m=23; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+3); v} %o A171479 (Magma) [(2-7*2^n+7*4^n)/2: n in [0..30]]; // _Vincenzo Librandi_, Jul 18 2011 %Y A171479 Cf. A171472, A171473, A171478. %K A171479 nonn,easy %O A171479 0,2 %A A171479 _Klaus Brockhaus_, Dec 09 2009