This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171544 #12 Sep 08 2022 08:45:50 %S A171544 7,1,7,1,3,7,1,6,5,6,0,0,6,3,6,1,8,3,9,8,1,2,9,0,3,0,7,8,1,5,8,7,4,9, %T A171544 9,0,9,0,8,1,2,7,4,5,9,3,9,8,8,6,1,8,8,5,5,5,2,4,4,9,8,9,4,0,6,8,9,3, %U A171544 0,3,7,6,5,0,9,4,1,4,5,7,9,8,5,4,9,8,4,0,3,8,8,2,7,1,0,1,3,1,6,7,1,3,1,9,8 %N A171544 Decimal expansion of 3*sqrt(2/35). %C A171544 The absolute value of the Clebsch-Gordan coupling coefficient <j1 j2; m1 m2 | J M> = <2 3/2 ; 0 -3/2 | 5/2 -3/2> . %H A171544 G. C. Greubel, <a href="/A171544/b171544.txt">Table of n, a(n) for n = 0..5000</a> %H A171544 Wikipedia, <a href="https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients">Table of Clebsch-Gordan coefficients</a> %F A171544 equals A010464*A171546. %e A171544 sqrt(18/35) = 3*sqrt(70)/35 = 0.7171371656006361839812903078158... %p A171544 evalf(3*sqrt(2/35),120); # _Muniru A Asiru_, Sep 28 2018 %t A171544 RealDigits[3*Sqrt[2/35], 10, 50][[1]] (* _G. C. Greubel_, Jun 08 2017 *) %o A171544 (PARI) default(realprecision, 50); 3*sqrt(2/35) \\ _G. C. Greubel_, Jun 08 2017 %o A171544 (Magma) SetDefaultRealField(RealField(50)); 3*Sqrt(2/35); // _G. C. Greubel_, Sep 28 2018 %K A171544 cons,easy,nonn %O A171544 0,1 %A A171544 _R. J. Mathar_, Dec 11 2009