This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171545 #13 Sep 08 2022 08:45:50 %S A171545 5,3,4,5,2,2,4,8,3,8,2,4,8,4,8,7,6,9,3,6,9,1,0,6,9,6,1,7,5,9,5,0,7,0, %T A171545 4,3,1,0,8,0,0,2,8,2,9,6,8,2,6,7,5,2,7,8,0,4,3,3,9,2,2,0,9,6,1,7,1,4, %U A171545 7,8,7,9,4,7,2,4,1,9,8,6,1,1,3,9,5,4,4,2,7,0,7,4,2,0,5,4,2,2,4,5,0,0,1,4,1 %N A171545 Decimal expansion of sqrt(2/7). %C A171545 The absolute value of the Clebsch-Gordan coupling coefficient <j1 j2; m1 m2 | J M> = <2 3/2 ; 0 -3/2 | 7/2 -3/2>. %H A171545 G. C. Greubel, <a href="/A171545/b171545.txt">Table of n, a(n) for n = 0..10000</a> %H A171545 Wikipedia, <a href="https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients">Table of Clebsch-Gordan coefficients</a> %F A171545 Equals A002193/A010465 = 2/A010471 = A010467/A010490. %e A171545 sqrt(2/7) = sqrt(14)/7 = 0.53452248382484876936910696175950... %t A171545 RealDigits[N[Sqrt[2/7],200]][[1]] (* _Vladimir Joseph Stephan Orlovsky_, Mar 04 2011*) %o A171545 (PARI) default(realprecision, 100); sqrt(2/7) \\ _G. C. Greubel_, Oct 02 2018 %o A171545 (Magma) SetDefaultRealField(RealField(100)); Sqrt(2/7); // _G. C. Greubel_, Oct 02 2018 %K A171545 cons,easy,nonn %O A171545 0,1 %A A171545 _R. J. Mathar_, Dec 11 2009