cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171566 Primes p such that 2*p-3 and 2*(2*p-3)-3 are primes (First member of a primes in a 2*p-3 double progression).

This page as a plain text file.
%I A171566 #9 Jul 04 2021 11:08:55
%S A171566 3,5,7,13,17,23,37,43,97,107,113,127,157,167,223,283,317,373,433,547,
%T A171566 563,587,617,647,743,757,773,937,1123,1277,1297,1423,1483,1487,1543,
%U A171566 1583,1597,1667,1697,1823,1913,1933,1973,2137,2143,2243,2333,2437,2467
%N A171566 Primes p such that 2*p-3 and 2*(2*p-3)-3 are primes (First member of a primes in a 2*p-3 double progression).
%D A171566 Mohammad K. Azarian, Double Progression, Problem 231, Math Horizons, Vol. 16, Issue 4, April 2009, p. 31.  Solution published in Vol. 17, Issue 2, November 2009, p. 32.
%H A171566 Harvey P. Dale, <a href="/A171566/b171566.txt">Table of n, a(n) for n = 1..1000</a>
%e A171566 2*3-3=3, 2*5-3=7; 2*7-3=11, 2*7-3=11; 2*11-3=19,..
%t A171566 Select[Prime[Range[7! ]],PrimeQ[2*#-3]&&PrimeQ[2*(2*#-3)-3]&]
%t A171566 Select[Prime[Range[400]],AllTrue[{2#-3,4#-9},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 04 2021 *)
%Y A171566 Cf. A063908
%K A171566 nonn
%O A171566 1,1
%A A171566 _Vladimir Joseph Stephan Orlovsky_, Dec 11 2009