cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171568 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A064613.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 37, 29, 9, 1, 150, 134, 57, 12, 1, 654, 622, 318, 94, 15, 1, 3012, 2948, 1686, 616, 140, 18, 1, 14445, 14317, 8781, 3693, 1055, 195, 21, 1, 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1, 361114, 360602, 238170, 118042, 44303, 12345, 2464, 332, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 11 2009

Keywords

Comments

Equal to A171515*B = B*A104259, B = A007318.

Examples

			Triangle T(n,k) begins
[0]     1;
[1]     3,     1;
[2]    10,     6,     1;
[3]    37,    29,     9,     1;
[4]   150,   134,    57,    12,    1;
[5]   654,   622,   318,    94,   15,    1;
[6]  3012,  2948,  1686,   616,  140,   18,   1;
[7] 14445, 14317,  8781,  3693, 1055,  195,  21,  1;
[8] 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1;
.
Production array begins
  3, 1
  1, 3, 1
  1, 1, 3, 1
  1, 1, 1, 3, 1
  1, 1, 1, 1, 3, 1
  1, 1, 1, 1, 1, 3, 1
- _Philippe Deléham_, Mar 05 2013
		

Crossrefs

Sum_{k=0..n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = -1, 0, 1, 2 respectively.

Programs

  • Maple
    T := proc(n,k) option remember;
    if n < 0 or k < 0 then 0 elif n = k then 1 else
    T(n-1, k-1) + 3*T(n-1,k) + add(T(n-1, k+1+i), i=0..n) fi end:
    for n from 0 to 8 do seq(T(n,k), k = 0..n) od; # Peter Luschny, Oct 16 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k < 0, 0, If[n == k, 1, T[n-1, k-1] + 3*T[n-1, k] + Sum[T[n-1, k+1+i], {i, 0, n}]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 23 2024, after Peter Luschny *)

Formula

T(n, 0) - T(n, 1) = 2^n.
T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + Sum_{i=0..n} T(n-1, k+1+i). - Philippe Deléham, Feb 23 2012

Extensions

Corrected and extended by Peter Luschny, Oct 16 2022