A171568 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A064613.
1, 3, 1, 10, 6, 1, 37, 29, 9, 1, 150, 134, 57, 12, 1, 654, 622, 318, 94, 15, 1, 3012, 2948, 1686, 616, 140, 18, 1, 14445, 14317, 8781, 3693, 1055, 195, 21, 1, 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1, 361114, 360602, 238170, 118042, 44303, 12345, 2464, 332, 27, 1
Offset: 0
Examples
Triangle T(n,k) begins [0] 1; [1] 3, 1; [2] 10, 6, 1; [3] 37, 29, 9, 1; [4] 150, 134, 57, 12, 1; [5] 654, 622, 318, 94, 15, 1; [6] 3012, 2948, 1686, 616, 140, 18, 1; [7] 14445, 14317, 8781, 3693, 1055, 195, 21, 1; [8] 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1; . Production array begins 3, 1 1, 3, 1 1, 1, 3, 1 1, 1, 1, 3, 1 1, 1, 1, 1, 3, 1 1, 1, 1, 1, 1, 3, 1 - _Philippe Deléham_, Mar 05 2013
Crossrefs
Programs
-
Maple
T := proc(n,k) option remember; if n < 0 or k < 0 then 0 elif n = k then 1 else T(n-1, k-1) + 3*T(n-1,k) + add(T(n-1, k+1+i), i=0..n) fi end: for n from 0 to 8 do seq(T(n,k), k = 0..n) od; # Peter Luschny, Oct 16 2022
-
Mathematica
T[n_, k_] := T[n, k] = If[n < 0 || k < 0, 0, If[n == k, 1, T[n-1, k-1] + 3*T[n-1, k] + Sum[T[n-1, k+1+i], {i, 0, n}]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 23 2024, after Peter Luschny *)
Formula
T(n, 0) - T(n, 1) = 2^n.
T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + Sum_{i=0..n} T(n-1, k+1+i). - Philippe Deléham, Feb 23 2012
Extensions
Corrected and extended by Peter Luschny, Oct 16 2022
Comments