cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171587 Sequence of the diagonal variant of the Fibonacci word fractal. Sequence of the Fibonacci tile.

This page as a plain text file.
%I A171587 #70 Dec 27 2024 02:57:14
%S A171587 0,1,1,0,1,1,0,0,1,0,0,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0,0,1,1,0,1,1,0,1,
%T A171587 1,0,0,1,0,0,1,1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,
%U A171587 0,1,1,0,1,1,0,0,1,0,0,1,0,0,1,1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,1,1,0,1,1,0,0
%N A171587 Sequence of the diagonal variant of the Fibonacci word fractal. Sequence of the Fibonacci tile.
%C A171587 This is the upper Wythoff sequence (A001950) read mod 2 (for proof see formula section). So a(n) = floor((n+1)*phi^2) mod 2 where phi = (1+sqrt(5))/2. - _Michel Dekking_, Feb 01 2021
%C A171587 Interpreted as 0=turn right and 1=turn left, this sequence builds the diagonal variant of the Fibonacci word fractal. Base for the construction of the Fibonacci tile (Tiles the plane by translation in 2 ways).
%C A171587 From _Michel Dekking_, May 03 2018: (Start)
%C A171587 This is a morphic sequence, i.e., the letter to letter projection of a fixed point of a morphism. To see this, one uses the formula which generates (a(n)) from the Dense Fibonacci word A143667. Note that in the Dense Fibonacci word, which is the fixed point of the morphism
%C A171587     0->10221, 1->1022, 2->1021,
%C A171587 the letter 0 exclusively occurs preceded directly by the letter 1. This enables one to create a new letter 3, encoding the word 10, and a morphism
%C A171587     1->322, 2->321, 3->3223221,
%C A171587 which has the property that the letter to letter projection
%C A171587     1->0, 2->1, 3->0
%C A171587 of its fixed point 3,2,2,3,2,2,1,3,2,1,... is equal to (a(n)).
%C A171587 (End)
%C A171587 Also Hofstadter G-sequence (A005206) mod 2. Another morphism can be written in octonary notation as: 0->4, 1->7, 2->5, 3->6, 4->60, 5->53, 6->71, 7->42, where the high bit gives A005614 and the low bit (i.e. "mod 2") gives this A171587 for n>0. The "Missing Words Proof Certificate" found under Links uses this representation to compute missing words of length L = 3, 4, 6, 9, 14, 22. Is there another missing word of length L = 35 as A001611 suggests? - _Bradley Klee_, Dec 24 2024
%H A171587 N. J. A. Sloane, <a href="/A171587/b171587.txt">Table of n, a(n) for n = 0..10000</a>
%H A171587 A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé, <a href="https://doi.org/10.1007/978-3-642-04397-0_7">Christoffel and Fibonacci Tiles</a>, DGCI 2009. Lecture Notes in Computer Science, vol 5810.
%H A171587 A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé, <a href="http://www.slabbe.org/Publications/2009-dgci.pdf">Christoffel and Fibonacci tiles</a>, Sept 2009.
%H A171587 A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé, <a href="http://www.slabbe.org/Communications/2009-dgci-slides.pdf">Christoffel and Fibonacci tiles presentation</a>, Sept 2009.
%H A171587 Bradley Klee, <a href="/A171587/a171587.go.txt">Missing Words Proof Certificate (Golang)</a>
%H A171587 Bradley Klee, <a href="/A171587/a171587_1.go.txt">Turns Equivalence Proof Certificate (Golang)</a>
%H A171587 Bradley Klee, <a href="/A171587/a171587.png">Drawing of Fibonacci word fractal</a>
%H A171587 Alexis Monnerot-Dumaine, <a href="http://hal.archives-ouvertes.fr/hal-00367972/">The Fibonacci word fractal</a>, Feb 2009.
%H A171587 Alexis Monnerot-Dumaine, <a href="/A171587/a171587.pdf">The Fibonacci word fractal</a> [Cached copy, with permission]
%F A171587 This sequence is defined by Blondin-Massé et al. as a limit of recursively defined words q[n]. Here q[0] is the empty word, and q[1]=0.
%F A171587 The recursion is given by
%F A171587     q[n]=q[n-1]q[n-2] if n=2 mod 3, and
%F A171587     q[n]=q[n-1]bar{q[n-2]} if n=0 or 1 mod 3,
%F A171587 where bar exchanges 0 and 1.
%F A171587 Also application of the mapping 1->0, 2->1, 0->empty word to the Dense Fibonacci word A143667.
%F A171587 Conjecture: A171587=(A001950 mod 2), as suggested for n=1,2,...,500 by Mathematica program below. - _Clark Kimberling_, May 31 2011
%F A171587 From _Michel Dekking_, May 03 2018: (Start)
%F A171587 Proof of Kimberling's 2011 conjecture, i.e., this sequence is the parity sequence of the Upper Wythoff sequence A001950.
%F A171587 The first difference sequence 3, 2, 3, 3, 2, 3, 2, 3, ... of the Upper Wythoff sequence is equal to the unique fixed point of the morphism
%F A171587   beta:  2 -> 3, 3 -> 32 (cf. A282162).
%F A171587 We define the first difference operator D on finite words w by
%F A171587     D(w(1)...w(m)) = (w(2)-w(1))...(w(m)-w(m-1)).
%F A171587 Note that the length of D(w) is one less than the length of w, and note
%F A171587 LEMMA 1: D(vw) = D(v)|w(1)-v(l)|D(w), if v = v(1)...v(l), and w = w(1)...w(m). Here |w(1)-v(l)| is modulo 2.
%F A171587 We also need (easily proved by induction)
%F A171587 LEMMA 2: The last letter of the word q[n] equals 0 if and only if n = 0,1,2 modulo 6.
%F A171587 Almost trivial is
%F A171587 LEMMA 3: The last letter e(n) of beta^n(2) equals 2 if and only if n = 0 modulo 2.
%F A171587 The following proposition implies the conjecture.
%F A171587 PROPOSITION: The difference sequence of q[n] satisfies D(q[n]) = beta^{n-1}(2) e(n-1)^{-1} modulo 2 for n>3.
%F A171587 Note that, by definition, beta^n(2) e(n)^{-1} is just the word beta^n(2), with the last letter removed.
%F A171587 PROOF: By induction. Combine Lemma 1, 2 and 3 in the recursion for the q[n], for n = 0,...,5 modulo 6, using the following table:
%F A171587 n modulo 6               | 0 | 1 | 2 | 3 | 4 | 5 |
%F A171587 last letter of q[n-1]    | 1 | 0 | 0 | 0 | 1 | 1 |
%F A171587 first letter of q[n-2]*  | 1 | 1 | 0 | 1 | 1 | 0 |
%F A171587 Here q[n-2]* denotes either q[n-2] (if n == 2 (mod 3)), or bar{q[n-2]} (if n == 0,1 (mod 3)).
%F A171587 For example, where all equalities are modulo 2,
%F A171587     D(q[8]) = D(q[7]) 0 D(q[6]) = beta^6(2) f(6) 0 beta^5(2) f(5) = beta^6(2) beta^5(2) f(5) = beta^5(32) f(5) = beta^7(2) f(7),
%F A171587 where f(n):=(e(n) mod 2)^{-1}.
%F A171587 (End)
%e A171587 q[2] = q[1]q[0] = 0,        q[3] = q[2]bar{q[1]} = 01,
%e A171587 q[4] = q[3]bar{q[2]} = 011, q[5] = q[4]q[3] = 01101.
%t A171587 (* This program supports the conjecture that A171587=(A001950 mod 2). *)
%t A171587 t = Nest[Flatten[# /. {1 -> {1, 0, 2, 2}, 0 -> {1, 0, 2, 2, 1}, 2 -> {1, 0, 2, 1}}] &, {1}, 5]
%t A171587 w = DeleteCases[t, 0] /. {1 -> 0, 2 -> 1}
%t A171587 u = Table[n + Floor[n*GoldenRatio], {n, 1, 500}]; v = Mod[u, 2]
%t A171587 Table[w[[n]] - v[[n]], {n, 1, 500}] (* supports conjecture for n=1,2,...,500 *)
%t A171587 (* t=A143667, w=A171587, u=A001950, conjecture: v=w *)
%o A171587 (Go)
%o A171587 func b(n int) []int {
%o A171587     a := make([]int, n+1);
%o A171587     for i:=1; i < n+1; i++ {
%o A171587         a[i] = i-a[a[i-1]];
%o A171587     };
%o A171587     for i:=0; i < n+1; i++ {
%o A171587         a[i] %= 2;
%o A171587     };
%o A171587     return a
%o A171587 } // _Bradley Klee_, Dec 25 2024
%Y A171587 Cf. A143667, A003849. Cf. A379184, A379274, A379275.
%Y A171587 Cf. A001950 (upper Wythoff sequence), A085002 (lower Wythoff sequence mod 2).
%K A171587 nonn
%O A171587 0,1
%A A171587 _Alexis Monnerot-Dumaine_, Dec 12 2009
%E A171587 Formula corrected and extended by _Michel Dekking_, May 03 2018