This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171604 #30 Nov 06 2016 08:56:48 %S A171604 1,1,1,1,1,3,4 %N A171604 Take the standard 2-D lattice packing of pennies; a(n) = number of ways to pick n pennies (modulo rotations and reflections) such that if we form a linkage with centers of pennies as hinges and with struts between centers of two touching pennies, the linkage is rigid. %C A171604 The pennies are laid flat on a horizontal plane. - _Daniel Forgues_, Oct 10 2016 %C A171604 We might have a rigid structure with a hole through which we have a taut chain of pennies (is this considered a packing?). - _Daniel Forgues_, Oct 08 2016 %e A171604 Examples for n=2,3,4,5,6,7: %e A171604 n=2: %e A171604 .o.o %e A171604 n=3: %e A171604 ..o %e A171604 .o.o %e A171604 n=4: %e A171604 ..o %e A171604 .o.o %e A171604 ..o %e A171604 n=5: %e A171604 ..o.o %e A171604 .o.o.o %e A171604 n=6: %e A171604 .o.o.o %e A171604 o.o.o %e A171604 . %e A171604 ...o %e A171604 o.o.o %e A171604 .o.o %e A171604 . %e A171604 ..o %e A171604 .o.o %e A171604 o.o.o %e A171604 n=7: %e A171604 ..o.o.o %e A171604 .o.o.o.o %e A171604 . %e A171604 ..o.o %e A171604 .o.o.o %e A171604 ..o.o %e A171604 . %e A171604 ...o.o %e A171604 ..o.o %e A171604 .o.o.o %e A171604 . %e A171604 ....o.o %e A171604 ...o.o.o %e A171604 ..o.o %Y A171604 Cf. A170807, A001524. %K A171604 nonn,more %O A171604 1,6 %A A171604 _J. Lowell_, Dec 12 2009 %E A171604 Edited by _N. J. A. Sloane_, Dec 19 2009