This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171608 #22 Aug 07 2022 22:13:39 %S A171608 1,2,0,0,2,0,0,3,0,0,0,0,3,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,5,0,0, %T A171608 0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0, %U A171608 0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0 %N A171608 Triangle by columns, T(n,k); (..., n, (n+1)) preceded by (n-1) zeros, as an infinite lower triangular matrix. %C A171608 Let the triangle = M as an infinite lower triangular matrix. %C A171608 M * (1, 2, 3, ...) = A002620: (1, 2, 4, 6, 9, 12, 16, 20, ...); %C A171608 M * (1, 3, 5, ...) = A084265: (1, 2, 6, 9, 15, 20, 28, 35, ...); %C A171608 M * (1, 3, 6, ...) = A028724: (1, 2, 6, 9, 18, 24, 40, 50, ...); %C A171608 Limit_{n->infinity} M^n = A171609: (1, 2, 4, 6, 12, 16, 24, 30, ...). %H A171608 Micah Manary, <a href="/A171608/b171608.txt">Table of n, a(n) for n = 1..5050</a> %F A171608 Triangle by columns, T(n,k); (..., n, (n+1)) preceded by (n-1) zeros, as an infinite lower triangular matrix. %e A171608 First few rows of the triangle: %e A171608 1; %e A171608 2, 0; %e A171608 0, 2, 0; %e A171608 0, 3, 0, 0; %e A171608 0, 0, 3, 0, 0; %e A171608 0, 0, 4, 0, 0, 0; %e A171608 0, 0, 0, 4, 0, 0, 0; %e A171608 0, 0, 0, 5, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 5, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 6, 0, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0; %e A171608 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0; %e A171608 ... %p A171608 A171609 := proc(n,k) %p A171608 if k = ceil(n/2) then %p A171608 floor( (n+2)/2) ; %p A171608 else %p A171608 0; %p A171608 end if; %p A171608 end proc: %p A171608 seq(seq( A171609(n,k),k=1..n),n=1..10) ; # _R. J. Mathar_, Sep 23 2021 %Y A171608 Cf. A002620, A084265, A028724, A171608. %K A171608 nonn,tabl,easy %O A171608 1,2 %A A171608 _Gary W. Adamson_, Dec 12 2009 %E A171608 More terms from _Micah Manary_, Aug 07 2022