This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171631 #13 Oct 02 2018 11:15:26 %S A171631 1,4,2,9,12,3,16,36,24,4,25,80,90,40,5,36,150,240,180,60,6,49,252,525, %T A171631 560,315,84,7,64,392,1008,1400,1120,504,112,8,81,576,1764,3024,3150, %U A171631 2016,756,144,9,100,810,2880,5880,7560,6300,3360,1080,180,10,121,1100 %N A171631 Triangle read by rows: T(n,k) = n*(binomial(n-2, k-1) + n*binomial(n-2, k)), n > 0 and 0 <= k <= n - 1. %C A171631 If T(0,0) = 0 is prepended, then row sums give A001788. %D A171631 Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, 1945, p. 32. %F A171631 Let p(x;n) = (x + 1)^n. Then row n are the coefficients in the expansion of p''(x;n) - x*p'(x;n) + n*p(x;n) = n*(x + n)*(x + 1)^(n - 2). %F A171631 From _Franck Maminirina Ramaharo_, Oct 02 2018: (Start) %F A171631 T(n,1) = A000290(n). %F A171631 T(n,2) = A011379(n). %F A171631 T(n,3) = 3*A002417(n-2). %F A171631 T(n,n-2) = A046092(n-1). %F A171631 T(n,n-3) = 9*A000292(n-2). %F A171631 G.f.: y*(x*y - y - 1)/(x*y + y - 1)^3. (End) %e A171631 Triangle begins: %e A171631 n\k| 0 1 2 3 4 6 7 8 9 %e A171631 ------------------------------------------------- %e A171631 1 | 1 %e A171631 2 | 4 2 %e A171631 3 | 9 12 3 %e A171631 4 | 16 36 24 4 %e A171631 5 | 25 80 90 40 5 %e A171631 6 | 36 150 240 180 60 6 %e A171631 7 | 49 252 525 560 315 84 7 %e A171631 8 | 64 392 1008 1400 1120 504 112 8 %e A171631 9 | 81 576 1764 3024 3150 2016 756 144 9 %e A171631 ... reformatted. - _Franck Maminirina Ramaharo_, Oct 02 2018 %t A171631 Table[CoefficientList[n*(x + n)*(x + 1)^(n - 2), x], {n, 1, 12}]//Flatten %o A171631 (Maxima) T(n, k) := n*(binomial(n - 2, k - 1) + n*binomial(n - 2, k))$ %o A171631 tabl(nn) := for n:1 thru nn do print(makelist(T(n, k), k, 0, n - 1))$ /* _Franck Maminirina Ramaharo_, Oct 02 2018 */ %Y A171631 Cf. A003506, A007318, A127952, A171531. %K A171631 nonn,tabl,easy %O A171631 1,2 %A A171631 _Roger L. Bagula_, Dec 13 2009 %E A171631 Edited and new name by _Franck Maminirina Ramaharo_, Oct 02 2018