cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171646 a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...*; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 15, 25, 35, 49, 77, 121, 165, 225, 330, 484, 660, 900, 1260, 1764, 2352, 3136, 4312, 5929, 7777, 10201, 13635, 18225, 23760, 30976, 40656, 53361, 68607, 88209, 114345, 148225, 188650, 240100, 307230
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

A006498 = analogous sequence using the Fibonacci numbers.
A171645 = .............................Primes, analogous formula.
A010551 = .............................Factorial numbers, analogous formula.

Examples

			a(12) = 77 = 1*1*1*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
		

Crossrefs

Programs

  • Maple
    A171646t := proc(n)
        local nh;
        nh := floor(n/2) ;
        combinat[numbpart](nh)/combinat[numbpart](nh-1) ;
    end proc:
    A171646 := proc(n)
        mul(A171646t(i),i=2..n) ;
    end proc:
    1,seq(A171646(n),n=2..40) ; # R. J. Mathar, Jul 21 2015

Formula

a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

Extensions

Corrected by R. J. Mathar, Jul 21 2015