A171646 a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...*; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).
1, 1, 1, 2, 4, 6, 9, 15, 25, 35, 49, 77, 121, 165, 225, 330, 484, 660, 900, 1260, 1764, 2352, 3136, 4312, 5929, 7777, 10201, 13635, 18225, 23760, 30976, 40656, 53361, 68607, 88209, 114345, 148225, 188650, 240100, 307230
Offset: 1
Keywords
Examples
a(12) = 77 = 1*1*1*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
Programs
-
Maple
A171646t := proc(n) local nh; nh := floor(n/2) ; combinat[numbpart](nh)/combinat[numbpart](nh-1) ; end proc: A171646 := proc(n) mul(A171646t(i),i=2..n) ; end proc: 1,seq(A171646(n),n=2..40) ; # R. J. Mathar, Jul 21 2015
Formula
a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).
Extensions
Corrected by R. J. Mathar, Jul 21 2015
Comments