This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171682 #23 Jan 03 2024 06:49:05 %S A171682 1,2,3,6,10,20,37,72,140,275,540,1069,2118,4206,8365,16659,33204, %T A171682 66231,132179,263913,527119,1053113,2104428,4205987,8407382,16807410, %U A171682 33603024,67187111,134343790,268638648,537198557,1074270342,2148336463,4296343787,8592156886,17183457812,34365534564 %N A171682 Number of compositions of n with the smallest part in the first position. %C A171682 First differences of A097939. %H A171682 Alois P. Heinz, <a href="/A171682/b171682.txt">Table of n, a(n) for n = 1..1000</a> %F A171682 G.f.: (1-x) * Sum_{k>=1} x^k/(1-x-x^k). [_Joerg Arndt_, Jan 01 2013] %F A171682 a(n) ~ 2^(n-2). - _Vaclav Kotesovec_, Sep 10 2014 %F A171682 G.f.: Sum_{n>=1} q^n/(1-Sum_{k>=n} q^k). - _Joerg Arndt_, Jan 03 2024 %e A171682 The a(6)=20 such compositions of 6 are %e A171682 [ 1] [ 1 1 1 1 1 1 ] %e A171682 [ 2] [ 1 1 1 1 2 ] %e A171682 [ 3] [ 1 1 1 2 1 ] %e A171682 [ 4] [ 1 1 1 3 ] %e A171682 [ 5] [ 1 1 2 1 1 ] %e A171682 [ 6] [ 1 1 2 2 ] %e A171682 [ 7] [ 1 1 3 1 ] %e A171682 [ 8] [ 1 1 4 ] %e A171682 [ 9] [ 1 2 1 1 1 ] %e A171682 [10] [ 1 2 1 2 ] %e A171682 [11] [ 1 2 2 1 ] %e A171682 [12] [ 1 2 3 ] %e A171682 [13] [ 1 3 1 1 ] %e A171682 [14] [ 1 3 2 ] %e A171682 [15] [ 1 4 1 ] %e A171682 [16] [ 1 5 ] %e A171682 [17] [ 2 2 2 ] %e A171682 [18] [ 2 4 ] %e A171682 [19] [ 3 3 ] %e A171682 [20] [ 6 ] %e A171682 - _Joerg Arndt_, Jan 01 2013. %t A171682 nn=37;Drop[CoefficientList[Series[Sum[x^i/(1-x^i/(1-x)),{i,1,nn}],{x,0,nn}],x],1] (* _Geoffrey Critzer_, Mar 12 2013 *) %o A171682 (PARI) %o A171682 N=66; x='x+O('x^N); %o A171682 gf= (1-x) * sum(k=1,N, x^k/(1-x-x^k) ); %o A171682 Vec(gf) %o A171682 /* _Joerg Arndt_, Jan 01 2013 */ %Y A171682 Cf. A079500. %K A171682 easy,nonn %O A171682 1,2 %A A171682 _Vladeta Jovovic_, Dec 15 2009 %E A171682 Added more terms, _Joerg Arndt_, Jan 01 2013