This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171712 #13 Sep 08 2022 08:45:50 %S A171712 1,1,2,1,2,3,1,2,1,2,1,2,1,2,3,1,2,1,2,1,2,1,2,1,2,1,2,3,1,2,1,2,1,2, %T A171712 1,2,1,2,1,2,1,2,1,2,3,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,3,1,2, %U A171712 1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,3,1,2,1,2,1,2,1,2,1,2,1,2,1,2 %N A171712 Triangle T(n,k) read by rows. Coloring of sectors in a circle. %C A171712 One row equals a coloring of n sectors in a circle and each number in the k-th column represents a color in the k-th sector of the circle. No pair of adjacent sectors can have the same color. The smallest numbers are chosen as colors and they are ordered from smallest to largest. %H A171712 G. C. Greubel, <a href="/A171712/b171712.txt">Rows n = 1..100 of triangle, flattened</a> %F A171712 T(n, k) = (3 + (-1)^k)/2 with T(n, 1) = 1 and T(n, n) = (5 - (-1)^n)/2 for n >= 2. - _G. C. Greubel_, Nov 29 2019 %e A171712 Table begins: %e A171712 1; %e A171712 1, 2; %e A171712 1, 2, 3; %e A171712 1, 2, 1, 2; %e A171712 1, 2, 1, 2, 3; %e A171712 1, 2, 1, 2, 1, 2; %e A171712 1, 2, 1, 2, 1, 2, 3; %e A171712 1, 2, 1, 2, 1, 2, 1, 2; %p A171712 seq(seq( `if`(k=1, 1, `if`(k=n, (5-(-1)^n)/2, (3+(-1)^k)/2 )), k=1..n), n=1..15); # _G. C. Greubel_, Nov 29 2019 %t A171712 T[n_, k_]:= If[k==1, 1, If[k==n, (5-(-1)^n)/2, (3+(-1)^k)/2]]; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* _G. C. Greubel_, Nov 29 2019 *) %o A171712 (PARI) T(n,k) = if(k==1, 1, if(k==n, (5-(-1)^n)/2, (3+(-1)^k)/2 )); \\ _G. C. Greubel_, Nov 29 2019 %o A171712 (Magma) %o A171712 function T(n,k) %o A171712 if k eq 1 then return 1; %o A171712 elif k eq n then return (5-(-1)^n)/2; %o A171712 else return (3+(-1)^k)/2; end if; return T; end function; %o A171712 [T(n,k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Nov 29 2019 %o A171712 (Sage) %o A171712 def T(n, k): %o A171712 if (k==1): return 1 %o A171712 elif (k==n): return (5-(-1)^n)/2 %o A171712 else: return (3+(-1)^k)/2 %o A171712 [[T(n, k) for k in (1..n)] for n in (1..15)] # _G. C. Greubel_, Nov 29 2019 %o A171712 (GAP) %o A171712 T:= function(n,k) %o A171712 if k=1 then return 1; %o A171712 elif k=n then return (5-(-1)^n)/2; %o A171712 else return (3+(-1)^k)/2; fi; end; %o A171712 Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 29 2019 %Y A171712 Cf. A158478. %K A171712 nonn,tabl %O A171712 1,3 %A A171712 _Mats Granvik_, Dec 16 2009