cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171714 a(n) = ceiling((n+1)^4/2).

This page as a plain text file.
%I A171714 #33 Sep 08 2022 08:45:50
%S A171714 1,8,41,128,313,648,1201,2048,3281,5000,7321,10368,14281,19208,25313,
%T A171714 32768,41761,52488,65161,80000,97241,117128,139921,165888,195313,
%U A171714 228488,265721,307328,353641,405000,461761,524288,592961,668168,750313,839808
%N A171714 a(n) = ceiling((n+1)^4/2).
%C A171714 Number of compositions of even natural numbers into 4 parts <=n.
%C A171714 Number of ways of placings of an even number of indistinguishable objects into 4 distinguishable boxes with the condition that in each box there can be at most n objects.
%H A171714 Vincenzo Librandi, <a href="/A171714/b171714.txt">Table of n, a(n) for n = 0..1000</a>
%F A171714 a(n) = 1/2*((n + 1)^4 + ((1 + (-1)^n)*1/2)^4).
%F A171714 a(n) = +4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +1*a(n-6).
%F A171714 G.f.: (1 + 4*x + 14*x^2 + 4*x^3 + x^4)/((1 + x)*(1 - x)^5).
%F A171714 a(n) = (n+1)^4 - floor((n+1)^4/2). - _Bruno Berselli_, Jan 18 2017
%e A171714 a(1)=8: there are 8 compositions of even natural numbers into 4 parts <=1
%e A171714 (0,0,0,0);
%e A171714 (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0);
%e A171714 (1,1,1,1).
%e A171714 a(2)=41: there are 41 compositions of even natural numbers into 4 parts <=2
%e A171714 for 0: (0,0,0,0);
%e A171714 for 2: (0,0,0,2), (0,0,2,0), (0,2,0,0), (2,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0);
%e A171714 for 4: (0,0,2,2), (0,2,0,2), (0,2,2,0), (2,0,0,2), (2,0,2,0), (2,2,0,0), (0,1,1,2), (0,1,2,1), (0,2,1,1), (1,0,1,2), (1,0,2,1), (1,1,0,2), (1,1,2,0), (1,2,0,1), (1,2,1,0), (2,0,1,1), (2,1,0,1), (2,1,1,0), (1,1,1,1);
%e A171714 for 6: (0,2,2,2), (2,0,2,2), (2,2,0,2), (2,2,2,0), (1,1,2,2), (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1), (2,2,1,1);
%e A171714 for 8: (2,2,2,2).
%t A171714 Table[1/2((n + 1)^4 + ((1 + (-1)^n)*1/2)^4), {n, 0, 25}]
%t A171714 Ceiling[Range[40]^4/2] (* _Bruno Berselli_, Jan 18 2017 *)
%o A171714 (Magma) [1/2*((n+1)^4+((1+(-1)^n)*1/2)^4): n in [0..40]]; // _Vincenzo Librandi_, Jun 16 2011
%o A171714 (PARI) a(n) = ceil(n^4/2); \\ _Michel Marcus_, Dec 14 2013
%Y A171714 Cf. A175110, A191903.
%K A171714 nonn,easy
%O A171714 0,2
%A A171714 _Adi Dani_, May 29 2011
%E A171714 Better name from _Enrique Pérez Herrero_, Dec 14 2013