This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171757 #25 Jun 24 2021 17:11:40 %S A171757 2,4,8,10,16,18,20,22,32,34,36,38,40,42,44,46,64,66,68,70,72,74,76,78, %T A171757 80,82,84,86,88,90,92,94,128,130,132,134,136,138,140,142,144,146,148, %U A171757 150,152,154,156,158,160,162,164,166,168,170,172,174,176,178 %N A171757 Even numbers whose binary expansion begins 10. %H A171757 Amiram Eldar, <a href="/A171757/b171757.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1024 from R. J. Mathar) %F A171757 a(n) = 2*A004761(n+1). - _Jon Maiga_ / _Georg Fischer_, Jun 24 2021 %p A171757 n := 1 ; %p A171757 for k from 2 to 4000 by 2 do %p A171757 dgs := convert(k,base,2) ; %p A171757 if op(-1,dgs) = 1 and op(-2,dgs) = 0 then %p A171757 printf("%d %d\n",n,k) ; %p A171757 n := n+1 ; %p A171757 end if; %p A171757 end do: # _R. J. Mathar_, Jan 31 2015 %t A171757 Select[Range[2, 200, 2], IntegerDigits[#, 2][[1 ;; 2]] == {1, 0} &] (* _Amiram Eldar_, Sep 01 2020 *) %o A171757 (Python) %o A171757 from itertools import count, product, takewhile %o A171757 def agen(): # generator for sequence %o A171757 yield 2 %o A171757 for digits in count(0): %o A171757 for mid in product("01", repeat=digits): %o A171757 yield int("10" + "".join(mid) + "0", 2) %o A171757 def aupto(lim): return list(takewhile(lambda x: x <= lim, agen())) %o A171757 print(aupto(180)) # _Michael S. Branicky_, Jun 24 2021 %o A171757 (PARI) isok(m) = if (!(m%2), my(b=binary(m)); (b[1]==1) && (b[2]==0)); \\ _Michel Marcus_, Jun 24 2021 %Y A171757 Cf. A004761, A171758, A171763, A171764. %Y A171757 A subsequence of A004754. %K A171757 nonn,base %O A171757 1,1 %A A171757 _N. J. A. Sloane_, Oct 12 2010