A171772 Number of steps needed to reach a prime when the map S(n)+M(n) is applied to n, or -1 if a prime is never reached. Here S(n) and M(N) mean the sum and the product of the digits of n in base 10.
1, 0, 0, 3, 0, 2, 0, 2, 2, 2, 0, 1, 0, 3, 1, 1, 0, 1, 0, 1, 1, 3, 0, 4, 1, 2, 1, 3, 0, 1, 0, 1, 2, 1, 1, 2, 0, 2, -1, 4, 0, 4, 0, 5, 1, 2, 0, 6, -1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 3, 0, 2, 2, 2, 1, 7, 0, 3, -1, 1, 0, 1, 0, -1, 1, 3, 3, 1, 0, 3
Offset: 1
Examples
a(4)=3 because 4->8->16->13 is prime. a(39)=-1 because 39 -> 39 ->39 ... never reaches a prime. a(49)=-1 because 49 -> 49 ->49 ... never reaches a prime. a(69)=-1 because 69 -> 69 ->69 ... never reaches a prime. a(74)=-1 because 74 -> 39 ->39 ... never reaches a prime. a(28)=3 because 28 ->26 ->20 ->2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local L; L:= convert(n,base,10); convert(L,`+`)+convert(L,`*`); end proc: g:= proc(n) option remember; local v,w; if n::prime then return 0 fi; v:= f(n); if v = n then return -1 fi; w:= procname(v); if w = -1 then -1 else w+1 fi end proc: map(g, [$1..100]); # Robert Israel, Nov 03 2019
Comments