This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171804 #21 Nov 17 2024 07:20:59 %S A171804 1,1,5,33,252,2090,18299,166450,1557595,14898228,145003996,1431487820, %T A171804 14299208690,144262270360,1467857359738,15045486643137, %U A171804 155208575698230,1610201799670560,16788969497000365,175838914655128068 %N A171804 G.f. satisfies: A(x) = P(x*A(x)^3) where A(x/P(x)^3) = P(x) is the g.f. for partition numbers (A000041). %F A171804 G.f. satisfies %F A171804 (1) A(x) = 1/Product_{k>0} (1-x^k*A(x)^3). %F A171804 (2) A(x) = Sum_{n>=0} x^n*A(x)^(3*n) / Product_{k=1..n} (1-x^k*A(x)^(3*k)). %F A171804 (3) A(x) = Sum_{n>=0} x^(n^2)*A(x)^(3*n^2) / Product_{k=1..n} (1-x^k*A(x)^(3*k))^2. %F A171804 G.f.: A(x) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + ... %F A171804 G.f. satisfies A(x/P(x)^3) = P(x) where: %F A171804 P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ... %F A171804 and x/P(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + ... %F A171804 Also, the g.f. A = A(x) satisfies: %F A171804 (1) A(x) = 1/((1-x*A^3) * (1-x^2*A^6) * (1-x^3*A^9) * (1-x^4*A^12) * ...). %F A171804 (2) A(x) = 1 + x*A^3/(1-x*A^3) + x^2*A^6/((1-x*A^3)*(1-x^2*A^6)) + x^3*A^9/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9)) + ... %F A171804 (3) A(x) = 1 + x*A^3/(1-x*A^3)^2 + x^4*A^12/((1-x*A^3)*(1-x^2*A^6))^2 + x^9*A^27/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9))^2 + ... %F A171804 From _Peter Bala_, Nov 12 2024: (Start) %F A171804 A(x) = ( 1/x * series_reversion(x/P(x)^3) )^(1/3). %F A171804 A(x) = the third iterate I^3(P(x)), where the operator I is defined by I(f(x)) = 1/x * series_reversion(x/f(x)). See the Example section. (Note that I(P(x)) is the g.f. of A109085 and I^2(P(x)) is the g.f. of A171802.) (End) %e A171804 From _Peter Bala_, Nov 12 2024: (Start) %e A171804 P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ... %e A171804 I(P(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + 2816*x^7 + ... %e A171804 I^2(P(x)) = 1 + x + 4*x^2 + 20*x^3 + 115*x^4 + 714*x^5 + 4669*x^6 + 31671*x^7 + ... %e A171804 I^3(P(x)) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + 18299*x^6 + 166450*x^7 + ... = the g.f. A(x). (End) %o A171804 (PARI) a(n)=polcoeff((1/x*serreverse(x*eta(x+x*O(x^n))^3))^(1/3), n) %o A171804 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A^3+x*O(x^n))^k))); polcoeff(A, n)} %o A171804 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(3*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)} %o A171804 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(3*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^3+x*O(x^n))))); polcoeff(A, n)} %Y A171804 Cf. A000041, A010815, A109085, A145268, A171802, A171803, A171805. %K A171804 nonn,easy %O A171804 0,3 %A A171804 _Paul D. Hanna_, Dec 20 2009