cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171840 Triangle read by rows, truncated columns of an array formed by taking sets of P(n) = Pascal's triangle, with the 1's column shifted up n = 1,2,3,... times. Then the n-th row of the array = lim_{k->infinity}, k=1,2,3,...; (P(n))^k, deleting the first 1.

This page as a plain text file.
%I A171840 #21 Feb 13 2022 09:28:29
%S A171840 1,1,2,1,2,5,1,2,4,15,1,2,4,9,52,1,2,4,8,23,203,1,2,4,8,17,65,877,1,2,
%T A171840 4,8,16,40,199,4140,1,2,4,8,16,33,104,654,21147,1,2,4,8,16,32,73,291,
%U A171840 2296,115975,1,2,4,8,16,32,65,177,857,8569,678570
%N A171840 Triangle read by rows, truncated columns of an array formed by taking sets of P(n) = Pascal's triangle, with the 1's column shifted up n = 1,2,3,... times. Then the n-th row of the array = lim_{k->infinity}, k=1,2,3,...; (P(n))^k, deleting the first 1.
%C A171840 Row sums = A171841: (1, 3, 8, 22, 68, 241, 974, ...).
%C A171840 Right border = the Bell sequence A000110 starting (1, 2, 5, 15, 52, ...).
%C A171840 Row 2 of the array = A007476 starting (1, 1, 2, 4, 9, 23, 65, 199, ...).
%F A171840 Triangle read by rows, truncated columns of an array formed by taking sets of P(n) = Pascal's triangle, with the 1's column shifted up n = 1,2,3,... times. Then n-th row of the array = lim_{k->infinity} (P(n))^k, deleting the first 1.
%e A171840 First few rows of the array:
%e A171840   1, 2, 5, 15, 52, 203, 877, 4140, 21147, ...
%e A171840   1, 1, 2,  4,  9,  23,  65,  199,   654, ...
%e A171840   1, 1, 1,  2,  4,   8,  17,   40,   104, ...
%e A171840   1, 1, 1,  1,  2,   4,   8,   16,    33, ...
%e A171840   1, 1, 1,  1,  1,   2,   4,    8,    16, ...
%e A171840   ...
%e A171840 Rightmost diagonal of 1's becomes leftmost column of the triangle:
%e A171840   1;
%e A171840   1, 2;
%e A171840   1, 2, 5;
%e A171840   1, 2, 4, 15;
%e A171840   1, 2, 4,  9, 52;
%e A171840   1, 2, 4,  8, 23, 203;
%e A171840   1, 2, 4,  8, 17,  65, 877;
%e A171840   1, 2, 4,  8, 16,  40, 199, 4140;
%e A171840   1, 2, 4,  8, 16,  33, 104,  654, 21147;
%e A171840   1, 2, 4,  8, 16,  32,  73,  291,  2296, 115975;
%e A171840   1, 2, 4,  8, 16,  32,  65,  177,   857,   8569, 678570;
%e A171840   ...
%e A171840 Example: n-th row corresponds to P(n) = Pascal's triangle with 1's column shifted up 1 row, so that P(1) =
%e A171840   1;
%e A171840   1;
%e A171840   1, 1;
%e A171840   1, 2, 1;
%e A171840   1, 3, 3, 1;
%e A171840   ...
%e A171840 then take lim_{k->infinity} (P(1))^k, getting A000110: (1, 1, 2, 5, 15, 52, ...), then delete the first 1.
%o A171840 (Sage)
%o A171840 # generates the diagonals of the triangle, starting with diag = 1 the Bell numbers.
%o A171840 def A171840_generator(len, diag) :
%o A171840     A = [1]*diag
%o A171840     for n in (0..len) :
%o A171840         for k in range(n, 0, -1) :
%o A171840             A[k - 1] += A[k]
%o A171840         A.append(A[0])
%o A171840         yield A[0]
%o A171840 for diag in (1..5) : print(list(A171840_generator(10, diag)))
%o A171840 # _Peter Luschny_, Feb 27 2012
%Y A171840 Cf. A007318, A007476, A171841, A000110.
%K A171840 nonn,tabl
%O A171840 1,3
%A A171840 _Gary W. Adamson_, Dec 19 2009