cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171855 Triangle read by rows: T(n,k) is the number of binary words of length n that have no pair of adjacent 1's and have k subwords 0000 (n>=0; k=0 for n=0,1,2; 0<=k<=n-3 for n>=3).

Original entry on oeis.org

1, 2, 3, 5, 7, 1, 10, 2, 1, 15, 3, 2, 1, 22, 6, 3, 2, 1, 32, 11, 6, 3, 2, 1, 47, 18, 12, 6, 3, 2, 1, 69, 30, 20, 13, 6, 3, 2, 1, 101, 50, 34, 22, 14, 6, 3, 2, 1, 148, 81, 59, 38, 24, 15, 6, 3, 2, 1, 217, 130, 99, 68, 42, 26, 16, 6, 3, 2, 1, 318, 208, 163, 118, 77, 46, 28, 17, 6, 3, 2, 1, 466
Offset: 0

Views

Author

Emeric Deutsch, Feb 15 2010

Keywords

Comments

Row n has n-2 entries.
Sum of entries in row n is the Fibonacci number A000045(n+2).
T(n,0)=A003410(n). Sum(k*T(n,k),k>=0)=A004798(n-3) for n>=4.

Examples

			T(5,1)=2 because we have 00001 and 10000; T(7,2)=3 because we have 0000010, 0100000, and 1000001.
Triangle starts:
1;
2;
3;
5;
7,1;
10,2,1;
15,3,2,1;
22,6,3,2,1;
		

Crossrefs

Programs

  • Maple
    G := (1+z)*(1+z-t*z+z^2-t*z^2+z^3-t*z^3)/(1-t*z-z^2+t*z^3-z^3+t*z^4-z^4): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 2; 3; for n from 3 to 15 do seq(coeff(P[n], t, k), k = 0 .. n-3) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (1+z)(1+z-tz+z^2-tz^2+z^3-tz^3)/(1-tz-z^2+tz^3-z^3+tz^4-z^4).