A171859 a(n) = Bell(n) - Sum_{j=0..n-1} Bell(j), where the Bell numbers are given in A000110.
1, 0, 0, 1, 6, 28, 127, 598, 2984, 15851, 89532, 536152, 3392609, 22609852, 158220300, 1159380201, 8873605258, 70778190768, 587125257319, 5055713850058, 45114387675316, 416535887361323, 3973511993495144, 39112086371684844
Offset: 0
Keywords
Programs
-
Maple
with(combinat): seq(bell(n)-add(bell(j), j = 0 .. n-1), n = 0 .. 23);
Formula
G.f.: G(0)*(1-x-x^2)/(1-x^2) + x/(1-x^2) where G(k) = 1 - x*(1-k*x)/(1 - x - x^2 - (1-2*x-x^2+2*x^3+x^4)/(1 - x - x^2 + (1-k*x)*(k*x+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 10 2013
Comments