This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171860 #40 Nov 27 2024 18:03:25 %S A171860 0,1,17,348,8640,254800,8749056,343901376,15257600000,755110160640, %T A171860 41278242816000,2471677136321536,160961785787056128, %U A171860 11330322120000000000,857485369051342438400,69444841895469240729600,5993559601317659925282816,549242871950650346384195584 %N A171860 Number of n-cell fixed polycubes that are proper in n-2 dimensions. %D A171860 Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf %D A171860 G. Barequet, M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015. %D A171860 R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275. See Th. 6. %H A171860 Vincenzo Librandi, <a href="/A171860/b171860.txt">Table of n, a(n) for n = 2..100</a> %H A171860 A. Asinowski, G. Barequet, R. Barequet, and G. Rote, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Barequet/barequet2.html">Proper n-Cell Polycubes in n-3 Dimensions</a>, J. Int. Seq. 15 (2012) #12.8.4. %H A171860 M. Shalah, <a href="http://www.cs.technion.ac.il/~barequet/theses/shalah-phd-thesis.pdf">Formulae and growth rates of animals on cubical and triangular lattices</a>, PhD Thesis, Israel Inst. Techn. (2017). %F A171860 a(n) = 2^(n-3)*n^(n-5)*(n-2)*(2*n^2 - 6*n + 9). %t A171860 Table[2^(n-3)n^(n-5)(n-2)(2n^2-6n+9),{n,2,30}] (* _Harvey P. Dale_, Nov 27 2024 *) %o A171860 (Magma) [2^(n-3)*n^(n-5)*(n-2)*(2*n^2-6*n+9): n in [2..20]]; // _Vincenzo Librandi_, May 26 2011 %Y A171860 Cf. A127670, A191092, A036364 (free). %Y A171860 Diagonal 2 of A195739. %K A171860 nonn %O A171860 2,3 %A A171860 _N. J. A. Sloane_, Oct 16 2010 %E A171860 Slightly edited by _Gill Barequet_, May 25 2011