A171898 Forward van Eck transform of A181391.
1, 2, 6, 2, 2, 5, 1, 6, 42, 5, 2, 4, 5, 9, 14, 3, 9, 3, 15, 2, 4, 6, 17, 3, 6, 32, 56, 5, 3, 131, 5, 11, 5, 3, 20, 6, 2, 8, 15, 31, 170, 3, 31, 18, 3, 3, 33, 5, 1, 11, 46, 56, 4, 37, 152, 307, 3, 7, 92, 4, 7, 62, 52, 3, 42, 3, 6, 2, 19, 6, 8, 3, 9, 3, 650, 2, 23, 8, 223, 7, 206, 3, 21, 25, 5, 8
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
ECKf:=proc(a) local b,i,m,n; if whattype(a) <> list then RETURN([]); fi: b:=[]; for n from 1 to nops(a)-1 do # does a(n) appear again? m:=0; for i from n+1 to nops(a) do if (a[i]=a[n]) then m:=i-n; break; fi od: b:=[op(b),m]; od: b:=[op(b),0]; RETURN(b); end:
-
Mathematica
terms = 100; m = 14 terms; (* Increase m until no zero appears in the output *) ClearAll[b, last]; b[] = 0; last[] = -1; last[0] = 2; nxt = 1; Do[hist = last[nxt]; b[n] = nxt; last[nxt] = n; nxt = 0; If[hist > 0, nxt = n - hist], {n, 3, m}]; A181391 = Array[b, m]; ECKf[a_List] := Module[{b = {}, i, m, n}, For[n = 1, n <= Length[a]-1, n++, m = 0; For[i = n+1, i <= Length[a], i++, If[a[[i]] == a[[n]], m = i-n; Break[]]]; b = Append[b, m]]; b = Append[b, 0]; Return[b]]; ECKf[A181391][[;; terms]] (* Jean-François Alcover, Oct 30 2020, after Maple *)
Formula
From Jan Ritsema van Eck, Aug 16 2019: (Start)
A181391(i+a(i)+1) = a(i) for any i, a(i)>0.
Comments