A171911 Van Eck's sequence (cf. A181391), but starting with a(1) = 1.
1, 0, 0, 1, 3, 0, 3, 2, 0, 3, 3, 1, 8, 0, 5, 0, 2, 9, 0, 3, 9, 3, 2, 6, 0, 6, 2, 4, 0, 4, 2, 4, 2, 2, 1, 23, 0, 8, 25, 0, 3, 19, 0, 3, 3, 1, 11, 0, 5, 34, 0, 3, 7, 0, 3, 3, 1, 11, 11, 1, 3, 5, 13, 0, 10, 0, 2, 33, 0, 3, 9, 50, 0, 4, 42, 0, 3, 7, 25, 40, 0, 5, 20, 0, 3, 8, 48, 0, 4, 15
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10001
Crossrefs
Programs
-
Mathematica
t = {1}; Do[ d = Quiet[Check[Position[t, Last[t]][[-2]][[1]], 0], Part::partw]; If[d == 0, x = 0, x = Length[t] - d]; AppendTo[t, x], 100] t (* Horst H. Manninger, Aug 03 2020 *)
-
PARI
A171911_vec(N,a=1,i=Map())={vector(N,n,a=if(n>1,iferr(n-mapget(i,a),E,0)+mapput(i,a,n),a))} \\ M. F. Hasler, Jun 11 2019
-
Python
A171911_list, l = [1, 0], 0 for n in range(1, 10**4): for m in range(n-1, -1, -1): if A171911_list[m] == l: l = n-m break else: # break did not occur l = 0 A171911_list.append(l) # Chai Wah Wu, Jan 02 2015
Extensions
Edited by M. F. Hasler, Jun 11 2019
Comments