cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171945 P-positions for game of misere version of Mark.

This page as a plain text file.
%I A171945 #17 Jul 11 2019 14:44:58
%S A171945 1,4,6,10,14,16,18,22,24,26,30,34,38,40,42,46,50,54,56,58,62,64,66,70,
%T A171945 72,74,78,82,86,88,90,94,96,98,102,104,106,110,114,118,120,122,126,
%U A171945 130,134,136,138,142,146,150,152,154,158,160,162,166,168,170,174
%N A171945 P-positions for game of misere version of Mark.
%C A171945 The same as A036554 except for the replacement of dopey by vile powers of 2. - Aviezri Fraenkel, Apr 28 2011
%H A171945 Aviezri S. Fraenkel, <a href="http://dx.doi.org/10.1016/j.disc.2011.03.032">The vile, dopey, evil and odious game players</a>, Discrete Math. 312 (1) (2012) 42-46.
%p A171945 isA171944 := proc(n)
%p A171945     option remember;
%p A171945     if n =0 or n =2 then
%p A171945         true;
%p A171945     elif isA171945(n) then
%p A171945         false;
%p A171945     else
%p A171945         true ;
%p A171945     end if;
%p A171945 end proc:
%p A171945 isA171945 := proc(n)
%p A171945     option remember;
%p A171945     if n = 0 or n =2 then
%p A171945         false ;
%p A171945     elif n = 1 then
%p A171945         true;
%p A171945     elif n mod 2 <> 0 then
%p A171945         return false;
%p A171945     elif isA171944(n/2) then
%p A171945         true;
%p A171945     else
%p A171945         false ;
%p A171945     end if;
%p A171945 end proc:
%p A171945 for n from 0 to 400 do
%p A171945     if isA171945(n) then
%p A171945         printf("%d,",n);
%p A171945     end if;
%p A171945 end do: # _R. J. Mathar_, Mar 28 2013
%t A171945 lim = 210; S = {1}; A = {};
%t A171945 Do[d = Divisors[n]; If[Complement[d, S] != {n}, A = Append[A, n]; S = Union[S, d]], {n, 1, lim}];
%t A171945 A (* _Jean-François Alcover_, Jul 11 2019, after _Peter Luschny_ in A171944 *)
%Y A171945 Complement of A171944. Also for n>1, twice A171944. Cf. A036554.
%K A171945 nonn,easy
%O A171945 1,2
%A A171945 _N. J. A. Sloane_, Oct 29 2010