This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171947 #49 Apr 22 2025 04:00:26 %S A171947 1,3,7,9,11,15,19,23,25,27,31,33,35,39,41,43,47,51,55,57,59,63,67,71, %T A171947 73,75,79,83,87,89,91,95,97,99,103,105,107,111,115,119,121,123,127, %U A171947 129,131,135,137,139,143,147,151,153,155,159,161,163,167,169,171,175,179 %N A171947 P-positions for game of UpMark. %C A171947 The following description, due to D. R. Hofstadter, Email, Oct 23 2014, is presumably equivalent to Fraenkel's. Begin with 1, and then each new member is 2k-1, where k is the smallest unused non-member of the sequence. Thus k starts out as 2, so 2k-1 = 3, so 3 is the sequence's second member. The next value of k is 4, giving 2k-1 = 7, so 7 is the sequence's third member. Then k = 5, so 9 is the next member. Then k = 6, so 11 is the next member. Then k = 8, so 15 is the next member. Etc. - _N. J. A. Sloane_, Oct 26 2014 %C A171947 It appears that this is the sequence of positions of 1 in the 1-limiting word of the morphism 0 -> 10, 1 -> 00; see A284948. - _Clark Kimberling_, Apr 18 2017 %C A171947 It appears that this sequence gives the positions of 0 in the limiting 0-word of the morphism 0 -> 11, 1 -> 01. See A285383. - _Clark Kimberling_, Apr 26 2017 %C A171947 It appears that this sequence gives integers that are congruent to 2^k+1 (mod 2^(k+1)), where k is any odd integer >=1. - _Jules Beauchamp_, Dec 04 2023 %H A171947 Reinhard Zumkeller, <a href="/A171947/b171947.txt">Table of n, a(n) for n = 1..10000</a> %H A171947 Aviezri S. Fraenkel, <a href="http://dx.doi.org/10.1016/j.disc.2011.03.032">The vile, dopey, evil and odious game players</a>, Discrete Math. 312 (2012), no. 1, 42-46. %F A171947 Presumably equal to 2*A003159 + 1. - _Reinhard Zumkeller_, Oct 26 2014 %p A171947 # Maple code for M+1 terms of sequence, from _N. J. A. Sloane_, Oct 26 2014 %p A171947 m:=1; a:=[m]; M:=100; %p A171947 for n from 1 to M do %p A171947 m:=m+1; if m in a then m:=m+1; fi; %p A171947 c:=2*m-1; %p A171947 a:=[op(a),c]; %p A171947 od: %p A171947 [seq(a[n],n=1..nops(a))]; %t A171947 f[n_] := Block[{a = {1}, b = {}, k}, Do[k = 2; While[MemberQ[a, k] || MemberQ[b, k], k++]; AppendTo[a, 2 k - 1]; AppendTo[b, k], {i, 2, n}]; a]; f@ 120 (* _Michael De Vlieger_, Jul 20 2015 *) %o A171947 (Haskell) %o A171947 import Data.List (delete) %o A171947 a171947 n = a171947_list !! (n-1) %o A171947 a171947_list = 1 : f [2..] where %o A171947 f (w:ws) = y : f (delete y ws) where y = 2 * w - 1 %o A171947 -- _Reinhard Zumkeller_, Oct 26 2014 %o A171947 (Python) %o A171947 def A171947(n): %o A171947 def bisection(f,kmin=0,kmax=1): %o A171947 while f(kmax) > kmax: kmax <<= 1 %o A171947 kmin = kmax >> 1 %o A171947 while kmax-kmin > 1: %o A171947 kmid = kmax+kmin>>1 %o A171947 if f(kmid) <= kmid: %o A171947 kmax = kmid %o A171947 else: %o A171947 kmin = kmid %o A171947 return kmax %o A171947 def f(x): %o A171947 c, s = n+x-1, bin(x-1)[2:] %o A171947 l = len(s) %o A171947 for i in range(l&1,l,2): %o A171947 c -= int(s[i])+int('0'+s[:i],2) %o A171947 return c %o A171947 return bisection(f,n,n) # _Chai Wah Wu_, Jan 29 2025 %Y A171947 Complement of A171946. Essentially identical to A072939. %Y A171947 A249034 gives missing odd numbers. %Y A171947 Cf. A003159. %K A171947 nonn,easy %O A171947 1,2 %A A171947 _N. J. A. Sloane_, Oct 29 2010