This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171968 #14 Jun 23 2020 19:23:20 %S A171968 1,1,1,3,1,5,3,7,1,9,5,13,3,7,11,15,1,17,9,25,5,13,21,29,3,7,11,15,19, %T A171968 23,27,31,1,33,17,49,9,25,41,57,5,13,21,29,37,45,53,61,3,7,11,15,19, %U A171968 23,27,31,35,39,43,47,51,55,59,63 %N A171968 Odd numbers of A181733 in the order of appearance. %C A171968 This deals with an aspect of the Josephus problem. %C A171968 Contribution from Paul Curtz, May 30 2011: (Start) %C A171968 For comparison with A000265, one can arrange the sequence in blocks of length (and with row sum) 2^k, like %C A171968 1; %C A171968 1; %C A171968 1, 3; %C A171968 1, 5, 3, 7; %C A171968 1, 9, 5, 13, 3, 7, 11, 15; %C A171968 1, 17, 9, 25, 5, 13, 21, 29, 3, 7, 11, 15, 19, 23, 27, 31; %C A171968 or %C A171968 1, 1, %C A171968 1, 3, %C A171968 1, 5, 3, 7, %C A171968 1, 9, 5, 13, 3, 7, 11, 15, %C A171968 The even numbers of A181733 are essentially A152423: %C A171968 2, %C A171968 2,4, %C A171968 2,4,6,8, %C A171968 2,4,6,8,10,12,14,16, %C A171968 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32. %C A171968 (End) %H A171968 <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a> %Y A171968 Cf. A090129. %K A171968 nonn %O A171968 0,4 %A A171968 _Paul Curtz_, Nov 19 2010