This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171978 #25 Dec 13 2024 09:30:56 %S A171978 1,1,2,4,7,22,37,84,172,454,745,2904,4722,10464,38546,88769,147439, %T A171978 475153,785894,3140342,10412267,19169464,32132160,125087460,224341028, %U A171978 394553026,799614318,3108061596,5172450911,21360507716,35407697816,81523452326,238510777299 %N A171978 Number of partitions of n into fractions k/(k+1), 0 < k <= n. %H A171978 <a href="/index/Par#partN">Index entries for sequences related to partitions</a> %F A171978 a(n) = q(n, 1) with q(x, k) = if x < k/(k+1) then 0^x else if k > n then 0 else q(x-k/(k+1), k) + q(x, k+1). %e A171978 a(3) = 4 partitions into parts 1/2, 2/3, or 3/4: %e A171978 #1: 3/4 + 3/4 + 3/4 + 3/4 = 3, %e A171978 #2: (3/4 + 3/4) + (1/2 + 1/2 + 1/2) = 3, %e A171978 #3: (2/3 + 2/3 + 2/3) + (1/2 + 1/2) = 3, %e A171978 #4: 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 = 3; %e A171978 a(4) = 7 partitions into parts 1/2, 2/3, 3/4, or 4/5: %e A171978 #1: 4/5 + 4/5 + 4/5 + 4/5 + 4/5 = 4, %e A171978 #2: (3/4 + 3/4 + 3/4 + 3/4) + (1/2 + 1/2) = 4, %e A171978 #3: (3/4 + 3/4) + (2/3 + 2/3 + 2/3) + 1/2 = 4, %e A171978 #4: (3/4 + 3/4) + (1/2 + 1/2 + 1/2 + 1/2 + 1/2) = 4, %e A171978 #5: 2/3 + 2/3 + 2/3 + 2/3 + 2/3 + 2/3 = 4, %e A171978 #6: (2/3 + 2/3 + 2/3) + (1/2 + 1/2 + 1/2 + 1/2) = 4, %e A171978 #7: 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 = 4. %p A171978 b:= proc(n, k) option remember; %p A171978 `if`(n=0, 1, `if`(k=0 or isprime(k+2) and irem(denom(n), %p A171978 k+2)=0, 0, b(n, k-1)+`if`(k>k*n+n, 0, b(n-k/(k+1), k)))) %p A171978 end: %p A171978 a:= n-> b(n, n): %p A171978 seq(a(n), n=0..16); # _Alois P. Heinz_, Jul 18 2012 %t A171978 b[n_, k_] := b[n, k] = If[n==0, 1, If[k==0 || PrimeQ[k+2] && Mod[ Denominator[n], k+2]==0, 0, b[n, k-1] + If[k>k*n+n, 0, b[n-k/(k+1), k]]] ]; a[n_] := b[n, n]; Table[a[n], {n, 0, 16}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *) %o A171978 (Haskell) %o A171978 -- import Data.Ratio ((%)) %o A171978 a171978 n = q (fromInteger n) $ zipWith (%) [1..n] [2..] where %o A171978 q 0 _ = 1 %o A171978 q _ [] = 0 %o A171978 q x ks'@(k:ks) %o A171978 | x < k = fromEnum (x == 0) %o A171978 | otherwise = q (x - k) ks' + q x ks %o A171978 -- _Reinhard Zumkeller_, Apr 01 2012 %K A171978 nonn %O A171978 0,3 %A A171978 _Reinhard Zumkeller_, Jan 20 2010 %E A171978 Offset corrected and a(16) added by _Reinhard Zumkeller_, Apr 01 2012 %E A171978 a(17)-a(23) from _Alois P. Heinz_, Jul 18 2012 %E A171978 a(24) from _Alois P. Heinz_, Sep 27 2014 %E A171978 a(25)-a(32) from _Jinyuan Wang_, Dec 13 2024