This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172003 #11 Mar 08 2020 00:04:52 %S A172003 1,1,3,5,3,13,33,33,13,71,245,351,245,71,441,1921,3597,3597,1921,441, %T A172003 2955,15525,35931,46709,35931,15525,2955,20805,127905,352665,563821, %U A172003 563821,352665,127905,20805,151695,1067925,3417975,6483285,7963151 %N A172003 Let y = y(u,v) be implicitly defined by g(u,v,y(u,v)) = 0. Read as a triangle by rows, the sequence represents the number of terms a(i,k-i) in the expansion of the bivariate divided difference [u_0,...,u_i; v_0,...,v_{k-i}]y in terms of trivariate divided differences of g. %C A172003 The sequence starts with a(1,0),a(0,1),a(2,0),a(1,1),a(0,2),a(3,0),... %F A172003 Let E = N^3 \ {(0,0,0), (0,0,1)} be a set of triples of natural numbers. The number of terms a(m,n) is the coefficient of u^m * v^n * y^{m+n-1} of the generating function %F A172003 - log(1 - Sum_{(r,s,t) in E} u^r * v^s * y^{r+s+t-1}) %F A172003 = Sum_{q >= 1} (Sum_{(r,s,t) in E} u^r * v^s * y^{r+s+t-1})^q / q. %e A172003 The subsequences a(1,0),a(2,0),a(3,0),... and a(0,1),a(0,2),a(0,3),... coincide with the sequence A162326. %e A172003 For (m,n) = (1,1), one expresses [u_0,u_1;v_0,v_1]y as a sum of 5 terms, %e A172003 [01;01]y = %e A172003 - [0;0;(0,0),(1,0),(1,1)]g * [01;0;(1,0)]g * [1;01;(1,1)]g / %e A172003 ( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(1,0)]g * [1;0;(1,0),(1,1)]g ) %e A172003 + [01;0;(1,0),(1,1)]g * [1;01;(1,1)]g / %e A172003 ( [0;0;(0,0),(1,1)]g * [1;0;(1,0),(1,1)]g ) %e A172003 - [01;01;(1,1)]g / [0;0;(0,0),(1,1)]g %e A172003 - [0;0;(0,0),(0,1),(1,1)]g * [0;01;(0,1)]g * [01;1;(1,1)]g / %e A172003 ( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(0,1)]g * [0;1;(0,1),(1,1)]g ) %e A172003 + [0;01;(0,1),(1,1)]g * [01;1;(1,1)]g / %e A172003 ( [0;0;(0,0),(1,1)]g * [0;1;(0,1),(1,1)]g ), %e A172003 where the numbers refer to the indices of the corresponding variable, e.g. %e A172003 [1;01;(1,1)]g = [u_1;v_0,v_1;y(u_1,v_1)]g. %o A172003 (Sage) %o A172003 R.<X1,X2,Y> = PolynomialRing(ZZ,3) %o A172003 def P(n1,n2,q): %o A172003 E = cartesian_product([list(range(n1+1)), list(range(n2+1)), list(range(n1+n2+1))]) %o A172003 E = [(i1,i2,j) for (i1,i2,j) in E if (i1,i2,j) != (0,0,0) and %o A172003 (i1,i2,j) != (0,0,1) and i1 + i2 + j <= n1 + n2 and %o A172003 2*(i1 + i2) + j - 1 <= 2*(n1+n2) - q] %o A172003 return R.sum(X1^s1 * X2^s2 * Y^(s1+s2+t-1) for s1,s2,t in E) %o A172003 n1, n2 = 4, 4 %o A172003 L = [[0 for _ in range(n1 + 1)]] * (n2 + 1) %o A172003 h = 1 + sum(((P(n1,n2,q))^q)/q for q in range(1,2*(n1+n2))) %o A172003 for k1 in range(n1+1): %o A172003 for k2 in range(k1+1): %o A172003 if (k1, k2) != (0, 0): %o A172003 print(k1, k2, h.coefficient({X1:k1, X2:k2, Y:k1+k2-1})) %Y A172003 Cf. A162326, which is the univariate variant of this sequence. %Y A172003 Cf. A172004, which is the analogous sequence for implicit derivatives, and A003262 for its univariate variant. %K A172003 nonn,tabl %O A172003 1,3 %A A172003 _Georg Muntingh_, Jan 22 2010