This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172013 #16 Mar 18 2022 04:33:25 %S A172013 3,118,20343,8530698,6711481694,8575821262764,16243345162977759, %T A172013 42826533033277249154,150138953276380791799098, %U A172013 675925071086215282939520628,3802445616812067139270851537718,26147695687370407271086390933321188,215852465255521412471161891166554453788 %N A172013 a(n) = 6*A142459(2*n, n)/(n+1). %H A172013 G. C. Greubel, <a href="/A172013/b172013.txt">Table of n, a(n) for n = 1..180</a> %F A172013 a(n) = 6*A142459(2*n, n)/(n+1). %t A172013 T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]]; %t A172013 A142459[n_, k_]:= A142459[n, k]= T[n,k,4]; %t A172013 A172013[n_]:= A172013[n]= 6*A142459[2*n, n]/(n+1); %t A172013 Table[A172013[n], {n,30}] (* modified by _G. C. Greubel_, Mar 18 2022 *) %o A172013 (Sage) %o A172013 @CachedFunction %o A172013 def T(n,k,m): %o A172013 if (k==1 or k==n): return 1 %o A172013 else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m) %o A172013 def A142459(n,k): return T(n,k,4) %o A172013 def A172013(n): return 6*A142459(2*n, n)/(n+1) %o A172013 [A172013(n) for n in (1..30)] # _G. C. Greubel_, Mar 18 2022 %Y A172013 Cf. A142458, A142459, A172010. %K A172013 nonn %O A172013 1,1 %A A172013 _Roger L. Bagula_, Nov 19 2010 %E A172013 Offset and formula corrected by _G. C. Greubel_, Mar 18 2022