This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172018 #11 Mar 16 2022 02:54:06 %S A172018 1,4,182,27410,8890310,5051270688,4459786293372,5659222645997646, %T A172018 9770821427711370950,22041005972637205198568, %U A172018 62967534725721252354766676,222256499446324679350316816644,950020052553444052606973276792092,4836606673194788521307702032786510240,28920975283745982162014025622769293094712 %N A172018 a(n) = A142458(2*n-1, n)/n. %H A172018 G. C. Greubel, <a href="/A172018/b172018.txt">Table of n, a(n) for n = 1..190</a> %F A172018 a(n) = A142458(2*n-1, n)/n. %t A172018 T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]]; %t A172018 A172018[n_]:= T[2*n-1, n, 3]/n; %t A172018 Table[A172018[n], {n, 30}] (* modified by _G. C. Greubel_, Mar 16 2022 *) %o A172018 (Sage) %o A172018 @CachedFunction %o A172018 def T(n,k,m): %o A172018 if (k==1 or k==n): return 1 %o A172018 else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m) %o A172018 def A172018(n): return T(2*n-1, n, 3)/n %o A172018 [A172018(n) for n in (1..30)] # _G. C. Greubel_, Mar 16 2022 %Y A172018 Cf. A142458, A172010. %K A172018 nonn %O A172018 1,2 %A A172018 _Roger L. Bagula_, Nov 19 2010 %E A172018 Offset changed and more terms added by _G. C. Greubel_, Mar 16 2022