A172020 Number of subsets S of {1,2,3,...,n} with the property that if x is a member of S then at least one of x-2 and x+2 is also a member of S.
1, 1, 2, 4, 8, 16, 28, 49, 84, 144, 252, 441, 777, 1369, 2405, 4225, 7410, 12996, 22800, 40000, 70200, 123201, 216216, 379456, 665896, 1168561, 2050657, 3598609, 6315113, 11082241, 19448018, 34128964, 59892184, 105103504, 184443732, 323676081, 568011852
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Proof by Andrew Weimholt, SeqFan Jan 2010
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,3,-1,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{2, 0, -1, -1, 3, -1, 0, 1, -1}, {1, 1, 2, 4, 8, 16, 28, 49, 84}, 32] (* Jean-François Alcover, Feb 15 2016 *)
-
PARI
Vec(x*(1-x+x^3+2*x^4-x^8)/((1-2*x+x^2-x^3)*(1+x-x^3)*(1-x+x^3)) + O(x^50)) \\ Colin Barker, Feb 15 2016
Formula
Andrew Weimholt has shown that a(2*n) = A005251(n+2) ^ 2, and a(2*n+1) = A005251(n+2) * A005251(n+3). (See the link.)
G.f.: x*(1 - x + x^3 + 2*x^4 - x^8) / ((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x + x^3)). - Colin Barker, Feb 15 2016
Comments