cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172071 Primes p such that either p - 5/2 -+ 7/2 is prime.

This page as a plain text file.
%I A172071 #13 Aug 17 2025 17:49:40
%S A172071 2,11,13,17,19,23,29,37,43,47,53,59,67,73,79,89,103,107,109,113,137,
%T A172071 157,163,173,179,197,199,229,233,239,257,263,269,277,283,313,317,337,
%U A172071 353,359,373,379,389,439,449,463,467,509,547,563,569,577,593,599,607,613
%N A172071 Primes p such that either p - 5/2 -+ 7/2 is prime.
%C A172071 Two together with values of p+6 where (p,p+6) are both prime.
%H A172071 Jinyuan Wang, <a href="/A172071/b172071.txt">Table of n, a(n) for n = 1..1000</a>
%e A172071 2 is a term because 2 - 5/2 - 7/2 = -4 (nonprime) and 2 - 5/2 + 7/2 = 3 (prime).
%p A172071 for n from 1 to 200 do p := ithprime(n) ; if isprime(p+1) <> isprime(p-6) then printf("%d,",p) ; end if; end do: # _R. J. Mathar_, Apr 24 2010
%t A172071 Join[{2}, Select[Prime[Range[5, 150]], PrimeQ[# - 6] &]] (* _Paolo Xausa_, Aug 17 2025 *)
%Y A172071 Cf. A000040, A046117.
%K A172071 nonn
%O A172071 1,1
%A A172071 _Juri-Stepan Gerasimov_, Jan 25 2010
%E A172071 Entries checked by _R. J. Mathar_, Apr 24 2010