This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172076 #54 Sep 08 2022 08:45:50 %S A172076 0,1,17,62,150,295,511,812,1212,1725,2365,3146,4082,5187,6475,7960, %T A172076 9656,11577,13737,16150,18830,21791,25047,28612,32500,36725,41301, %U A172076 46242,51562,57275,63395,69936,76912,84337,92225,100590,109446,118807,128687 %N A172076 a(n) = n*(n+1)*(14*n-11)/6. %C A172076 Generated by the formula n*(n+1)*(2*d*n-(2*d-3))/6 for d=7. %C A172076 From _Bruno Berselli_, Dec 14 2010: (Start) %C A172076 In fact, the sequence is related to A001106 by a(n) = n*A001106(n) - Sum_{k=0..n-1} A001106(k) and this is the case d=7 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. %C A172076 Also 16-gonal (or hexadecagonal) pyramidal numbers. %C A172076 Inverse binomial transform of this sequence: 0, 1, 15, 14, 0, 0 (0 continued). (End) %D A172076 E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. [From _Bruno Berselli_, Feb 13 2014] %H A172076 Vincenzo Librandi, <a href="/A172076/b172076.txt">Table of n, a(n) for n = 0..1000</a> %H A172076 B. Berselli, A description of the recursive method in Comments lines: website <a href="http://www.lanostra-matematica.org/2008/12/sequenze-numeriche-e-procedimenti.html">Matem@ticamente</a> (in Italian), 2008. %H A172076 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a>. %H A172076 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %H A172076 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A172076 G.f.: x*(1+13*x)/(1-x)^4. - _Bruno Berselli_, Dec 15 2010 %F A172076 a(n) = Sum_{i=0..n} A051868(i). - _Bruno Berselli_, Dec 15 2010 %F A172076 a(n) = Sum_{i=0..n-1} (n-i)*(14*i+1), with a(0)=0. - _Bruno Berselli_, Feb 10 2014 %F A172076 E.g.f.: x*(6 + 45*x + 14*x^2)*exp(x)/6. - _G. C. Greubel_, Aug 30 2019 %p A172076 A172076:=n->n*(n+1)*(14*n-11)/6; seq(A172076(n), n=0..50); # _Wesley Ivan Hurt_, Feb 26 2014 %t A172076 LinearRecurrence[{4,-6,4,-1}, {0, 1, 17, 62}, 50] (* _Vincenzo Librandi_, Mar 01 2012 *) %o A172076 (PARI) vector(40, n, n*(n-1)*(14*n-25)/6) \\ _G. C. Greubel_, Aug 30 2019 %o A172076 (Magma) [n*(n+1)*(14*n-11)/6: n in [0..40]] // _G. C. Greubel_, Aug 30 2019 %o A172076 (Sage) [n*(n+1)*(14*n-11)/6 for n in (0..40)] # _G. C. Greubel_, Aug 30 2019 %o A172076 (GAP) List([0..40], n-> n*(n+1)*(14*n-11)/6); # _G. C. Greubel_, Aug 30 2019 %Y A172076 Cf. similar sequences listed in A237616. %K A172076 nonn,easy %O A172076 0,3 %A A172076 _Vincenzo Librandi_, Jan 25 2010