A172081 Decimal expansion of the local minimum F(x) of the Fibonacci Function at x = A171909.
8, 9, 6, 9, 4, 6, 3, 8, 7, 4, 2, 4, 6, 0, 6, 1, 7, 2, 9, 1, 2, 6, 0, 0, 3, 7, 1, 0, 6, 8, 7, 6, 5, 4, 4, 4, 1, 7, 9, 9, 9, 3, 7, 5, 7, 4, 2, 0, 9, 1, 8, 0, 5, 6, 1, 6, 5, 8, 2, 7, 4, 6, 4, 9, 6, 1, 0, 3, 8, 1, 4, 1, 5, 4, 0, 6, 2, 4, 2, 0, 8, 2, 2, 4, 1, 3, 4, 6, 3, 5, 6, 7, 1, 9, 7, 5, 3, 1, 4, 4, 4, 7, 4, 0
Offset: 0
Examples
F(1.67668837258...) = 0.896946387424606172912600371068765...
Links
- Gerd Lamprecht, Iterationsrechner
- Gerd Lamprecht, Zahlenfolgen (sequences)
- E. Weisstein, Fibonacci Number, Mathworld.
Programs
-
Maple
p := (1+sqrt(5))/2 ; F := (p^x - cos(Pi*x)/p^x )/sqrt(5); Fpr := diff(F,x) ; Fpr2 := diff(Fpr,x) ; Digits := 80 ; x0 := 1.67 ; for n from 1 to 10 do x0 := evalf(x0-subs(x=x0,Fpr)/subs(x=x0,Fpr2)) ; print( evalf(subs(x=x0,F))) ; end do : # R. J. Mathar, Feb 02 2010
-
Mathematica
digits = 104; F[x_] := (GoldenRatio^x - Cos[Pi*x]/GoldenRatio^x)/Sqrt[5]; x0 = x /. FindRoot[F'[x], {x, 2}, WorkingPrecision -> digits+1]; RealDigits[F[x0], 10, digits][[1]] (* Jean-François Alcover, Jan 28 2014 *)
Extensions
Edited, offset and leading zero normalized by R. J. Mathar, Feb 02 2010
Comments