cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172081 Decimal expansion of the local minimum F(x) of the Fibonacci Function at x = A171909.

Original entry on oeis.org

8, 9, 6, 9, 4, 6, 3, 8, 7, 4, 2, 4, 6, 0, 6, 1, 7, 2, 9, 1, 2, 6, 0, 0, 3, 7, 1, 0, 6, 8, 7, 6, 5, 4, 4, 4, 1, 7, 9, 9, 9, 3, 7, 5, 7, 4, 2, 0, 9, 1, 8, 0, 5, 6, 1, 6, 5, 8, 2, 7, 4, 6, 4, 9, 6, 1, 0, 3, 8, 1, 4, 1, 5, 4, 0, 6, 2, 4, 2, 0, 8, 2, 2, 4, 1, 3, 4, 6, 3, 5, 6, 7, 1, 9, 7, 5, 3, 1, 4, 4, 4, 7, 4, 0
Offset: 0

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 25 2010

Keywords

Comments

Define the Fibonacci Function F(x) and its derivative as in A171909.
The derivative is dF/dx = (phi^x * log(phi) - cos(Pi*x)*log(phi)/phi^x + Pi*sin(Pi*x)/phi^x)/sqrt(5).
Set dF(x)/dx = 0 to find the local minimum.

Examples

			F(1.67668837258...) = 0.896946387424606172912600371068765...
		

Crossrefs

Programs

  • Maple
    p := (1+sqrt(5))/2 ; F := (p^x - cos(Pi*x)/p^x )/sqrt(5);
    Fpr := diff(F,x) ; Fpr2 := diff(Fpr,x) ;
    Digits := 80 ; x0 := 1.67 ;
    for n from 1 to 10 do
    x0 := evalf(x0-subs(x=x0,Fpr)/subs(x=x0,Fpr2)) ;
    print( evalf(subs(x=x0,F))) ;
    end do : # R. J. Mathar, Feb 02 2010
  • Mathematica
    digits = 104; F[x_] := (GoldenRatio^x - Cos[Pi*x]/GoldenRatio^x)/Sqrt[5]; x0 = x /. FindRoot[F'[x], {x, 2}, WorkingPrecision -> digits+1]; RealDigits[F[x0], 10, digits][[1]] (* Jean-François Alcover, Jan 28 2014 *)

Extensions

Edited, offset and leading zero normalized by R. J. Mathar, Feb 02 2010