This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172088 #21 Jun 10 2025 23:34:16 %S A172088 -1,-1,-1,-1,0,-1,-1,0,0,-1,-1,4,4,4,-1,-1,6,10,10,6,-1,-1,32,38,42, %T A172088 38,32,-1,-1,56,88,94,94,88,56,-1,-1,278,334,366,368,366,334,278,-1, %U A172088 -1,560,838,894,922,922,894,838,560,-1,-1,2894,3454,3732,3784,3810,3784,3732,3454,2894,-1 %N A172088 Triangle: T(n,m) = n!! - m!! - (n-m)!! read by rows 0 <= m <= n, where ()!! are the double factorials. %C A172088 Row sums are {-1, -2, -2, -2, 10, 30, 180, 474, 2322, 6426, 31536, ...}; n-th row sum is (n+1)*n!! - 2*A129981(n). %H A172088 G. C. Greubel, <a href="/A172088/b172088.txt">Rows n = 0..100 of triangle, flattened</a> %F A172088 T(n,m) = A006882(n) - A006882(m) - A006882(n-m). %e A172088 Triangle begins %e A172088 -1; %e A172088 -1, -1; %e A172088 -1, 0, -1; %e A172088 -1, 0, 0, -1; %e A172088 -1, 4, 4, 4, -1; %e A172088 -1, 6, 10, 10, 6, -1; %e A172088 -1, 32, 38, 42, 38, 32, -1; %e A172088 -1, 56, 88, 94, 94, 88, 56, -1; %e A172088 -1, 278, 334, 366, 368, 366, 334, 278, -1; %e A172088 -1, 560, 838, 894, 922, 922, 894, 838, 560, -1; %e A172088 -1, 2894, 3454, 3732, 3784, 3810, 3784, 3732, 3454, 2894, -1; %p A172088 A172088 := proc(n,m) %p A172088 doublefactorial(n)-doublefactorial(m)-doublefactorial(n-m) ; %p A172088 end proc: %p A172088 seq(seq(A172088(n,m),m=0..n),n=0..10) ; # _R. J. Mathar_, Oct 11 2011 %t A172088 T[n_, k_] = n!! -k!! -(n-k)!!; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten %o A172088 (PARI) f2(n) = prod(j=0, (n-1)\2, n-2*j); %o A172088 T(n,k) = f2(n) - f2(k) - f2(n-k); \\ _G. C. Greubel_, Dec 05 2019 %o A172088 (Magma) F2:=func< n | &*[n..2 by -2] >; %o A172088 [F2(n) - F2(k) - F2(n-k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 05 2019 %o A172088 (Sage) %o A172088 def T(n, k): return (n).multifactorial(2) - (k).multifactorial(2) - (n-k).multifactorial(2) %o A172088 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 05 2019 %Y A172088 Cf. A006882, A129981. %K A172088 sign,tabl,easy %O A172088 0,12 %A A172088 _Roger L. Bagula_, Jan 25 2010