This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A172089 #16 Sep 08 2022 08:45:50 %S A172089 1,1,1,1,2,1,2,3,3,2,3,8,6,8,3,8,15,20,20,15,8,15,48,45,80,45,48,15, %T A172089 48,105,168,210,210,168,105,48,105,384,420,896,630,896,420,384,105, %U A172089 384,945,1728,2520,3024,3024,2520,1728,945,384,945,3840,4725,11520,9450,16128,9450,11520,4725,3840,945 %N A172089 Triangle T(n,m) = n!/(m!!*(n-m)!!) read by rows, where (.)!! = A006882(.) are double factorials. %C A172089 Row sums are {1, 2, 4, 10, 28, 86, 296, 1062, 4240, 17202, 77088, ...}. %H A172089 G. C. Greubel, <a href="/A172089/b172089.txt">Rows n = 0..100 of triangle, flattened</a> %F A172089 T(n,m) = A000142(n)/(A006882(m)*A006882(n-m)). %e A172089 Triangle begins %e A172089 1; %e A172089 1, 1; %e A172089 1, 2, 1; %e A172089 2, 3, 3, 2; %e A172089 3, 8, 6, 8, 3; %e A172089 8, 15, 20, 20, 15, 8; %e A172089 15, 48, 45, 80, 45, 48, 15; %e A172089 48, 105, 168, 210, 210, 168, 105, 48; %e A172089 105, 384, 420, 896, 630, 896, 420, 384, 105; %e A172089 384, 945, 1728, 2520, 3024, 3024, 2520, 1728, 945, 384; %e A172089 945, 3840, 4725, 11520, 9450, 16128, 9450, 11520, 4725, 3840, 945; %p A172089 A172089 := proc(n,m) %p A172089 factorial(n)/doublefactorial(m)/doublefactorial(n-m) ; %p A172089 end proc: %p A172089 seq(seq(A172089(n,m),m=0..n),n=0..10) ; # _R. J. Mathar_, Oct 11 2011 %t A172089 binomialn[n_, k_] = n!/(Factorial2[n-k]*Factorial2[k]); Table[binomialn[n, k], {n,0,10}, {k,0,n}]//Flatten %o A172089 (PARI) %o A172089 f2(n) = prod(i=0, (n-1)\2, n - 2*i ); %o A172089 T(n,k) = n!/(f2(k)*f2(n-k)); %o A172089 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Dec 05 2019 %o A172089 (Magma) %o A172089 F2:=func< n | &*[n..2 by -2] >; %o A172089 [Factorial(n)/(F2(k)*F2(n-k)): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 05 2019 %o A172089 (Sage) %o A172089 def T(n, k): return factorial(n)/((k).multifactorial(2)*(n-k).multifactorial(2)) %o A172089 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 05 2019 %Y A172089 Cf. A000142, A006882. %K A172089 nonn,tabl,easy %O A172089 0,5 %A A172089 _Roger L. Bagula_, Jan 25 2010